This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348921 #15 Nov 09 2021 15:02:18 %S A348921 0,0,0,1,2,1,2,0,0,-1,-2,-1,-2,1,1,1,2,3,2,3,1,1,0,-1,0,-1,2,2,2,3,4, %T A348921 3,4,2,2,1,0,1,0,4,4,4,5,6,5,6,4,4,3,2,3,2,8,8,8,9,10,9,10,8,8,7,6,7, %U A348921 6,3,3,3,4,5,4,5,3,3,2,1,2,1,6,6,6,7,8,7 %N A348921 a(n) is the "w" part of f(n) = Sum_{k >= 0} g(d_k) * (4 + w)^k where g(0) = 0 and g(1 + u + 2*v) = (1 + u) * (1 + w)^v for any u = 0..1 and v = 0..5, Sum_{k >= 0} d_k * 13^k is the base-13 representation of n and w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity; sequence A348920 gives "real" parts. %C A348921 For any Eisenstein integer z = u + v*w (where u and v are integers), we call u the "real" part of z and v the "w" part of z. %C A348921 This sequence is a variant of A334493 and of A348917. %C A348921 It appears that f defines a bijection from the nonnegative integers to the Eisenstein integers. %C A348921 The following diagram depicts g(d) for d = 0..12: %C A348921 "w" axis %C A348921 \ %C A348921 . . . %C A348921 6 \ 4 %C A348921 \ %C A348921 . . %C A348921 5 \ 3 %C A348921 \ %C A348921 ._____._____._____._____._ "real" axis %C A348921 8 7 0 \ 1 2 %C A348921 \ %C A348921 . . %C A348921 9 11 \ %C A348921 \ %C A348921 . . . %C A348921 10 12 \ %H A348921 Rémy Sigrist, <a href="/A348921/b348921.txt">Table of n, a(n) for n = 0..2196</a> %H A348921 Joerg Arndt, <a href="/A348920/a348920_1.png">Representation of a similar construction</a> %H A348921 Rémy Sigrist, <a href="/A348920/a348920.png">Colored representation of f for n = 0..13^5-1 in the complex plane</a> (the hue is function of n) %H A348921 Rémy Sigrist, <a href="/A348921/a348921.gp.txt">PARI program for A348921</a> %H A348921 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a> %o A348921 (PARI) See Links section. %Y A348921 Cf. A334493, A348917, A348920. %K A348921 sign,base %O A348921 0,5 %A A348921 _Rémy Sigrist_, Nov 04 2021