cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348961 Exponential harmonic (or e-harmonic) numbers of type 1: numbers k such that esigma(k) | k * d_e(k), where d_e(k) is the number of exponential divisors of k (A049419) and esigma(k) is their sum (A051377).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

First differs from A005117 at n = 24, from A333634 and A348499 at n = 47, and from A336223 at n = 63.
Sándor (2006) proved that all the squarefree numbers are e-harmonic of type 1, and that an e-perfect number (A054979) is a term of this sequence if and only if at least one of the exponents in its prime factorization is not a perfect square.
Since all the e-perfect numbers are products of a primitive e-perfect number (A054980) and a coprime squarefree number, and all the known primitive e-perfect numbers have a nonsquare exponent in their prime factorizations, there is no known e-perfect number that is not in this sequence.

Examples

			3 is a term since esigma(3) = 3, 3 * d_e(3) = 3 * 1, so esigma(3) | 3 * d_e(3).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ]