A348961 Exponential harmonic (or e-harmonic) numbers of type 1: numbers k such that esigma(k) | k * d_e(k), where d_e(k) is the number of exponential divisors of k (A049419) and esigma(k) is their sum (A051377).
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105
Offset: 1
Keywords
Examples
3 is a term since esigma(3) = 3, 3 * d_e(3) = 3 * 1, so esigma(3) | 3 * d_e(3).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- József Sándor, On exponentially harmonic numbers, Scientia Magna, Vol. 2, No. 3 (2006), pp. 44-47.
- József Sándor, Selected Chapters of Geomety, Analysis and Number Theory, 2005, pp. 141-145.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ]
Comments