This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348962 #14 Aug 06 2024 06:08:20 %S A348962 36,180,252,396,468,612,675,684,828,1044,1116,1260,1332,1350,1476, %T A348962 1548,1692,1800,1908,1936,1980,2124,2196,2340,2412,2556,2628,2700, %U A348962 2772,2844,2988,3060,3204,3276,3420,3492,3636,3708,3852,3924,4068,4140,4284,4572,4716 %N A348962 Exponential harmonic numbers of type 1 (A348961) that are not squarefree. %C A348962 Sándor (2006) proved that all the squarefree numbers are exponential harmonic numbers of type 1. %H A348962 Amiram Eldar, <a href="/A348962/b348962.txt">Table of n, a(n) for n = 1..10000</a> %H A348962 József Sándor, <a href="https://citeseerx.ist.psu.edu/pdf/2936ca1cfcb9e3673ed4165dca32dbee1f4070f5">On exponentially harmonic numbers</a>, Scientia Magna, Vol. 2, No. 3 (2006), pp. 44-47. %H A348962 József Sándor, <a href="https://blngcc.files.wordpress.com/2008/11/jozsel-sandor-selected-chaters-of-geometry-analysis-and-number-theory.pdf">Selected Chapters of Geomety, Analysis and Number Theory</a>, 2005, pp. 141-145. %e A348962 36 = 2^2 * 3^2 is a term since it is not squarefree, A051377(36) = 72, 36 * A049419(36) = 36 * 4 = 144, so A051377(36) | 36 * A049419(36). %t A348962 f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[5000], ! SquareFreeQ[#] && ehQ[#] &] %Y A348962 Intersection of A013929 and A348961. %Y A348962 Cf. A049419, A005117, A051377, A054979, A054980, A348965. %K A348962 nonn %O A348962 1,1 %A A348962 _Amiram Eldar_, Nov 05 2021