This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348964 #11 Aug 06 2024 06:06:02 %S A348964 1,2,3,5,6,7,10,11,12,13,14,15,17,18,19,21,22,23,26,29,30,31,33,34,35, %T A348964 36,37,38,39,40,41,42,43,46,47,51,53,55,57,58,59,60,61,62,65,66,67,69, %U A348964 70,71,73,74,75,77,78,79,82,83,84,85,86,87,89,90,91,93,94 %N A348964 Exponential harmonic (or e-harmonic) numbers of type 2: numbers k such that the harmonic mean of the exponential divisors of k is an integer. %C A348964 Sándor (2006) proved that all the squarefree numbers are e-harmonic of type 2. %C A348964 Equivalently, numbers k such that A348963(k) | k * A049419(k). %C A348964 Apparently, most exponential harmonic numbers of type 1 (A348961) are also terms of this sequence. Those that are not exponential harmonic numbers of type 2 are 1936, 5808, 9680, 13552, 17424, 29040, ... %H A348964 Amiram Eldar, <a href="/A348964/b348964.txt">Table of n, a(n) for n = 1..10000</a> %H A348964 Nicuşor Minculete, <a href="http://www.imar.ro/~purice/Inst/2012/Minculete-Dr.pdf">Contribuţii la studiul proprietăţilor analitice ale funcţiilor aritmetice - Utilizarea e-divizorilor</a>, Ph.D. thesis, Academia Română, 2012. See section 4.3, pp. 90-94. %H A348964 József Sándor, <a href="http://citeseerx.ist.psu.edu/pdf/2936ca1cfcb9e3673ed4165dca32dbee1f4070f5">On exponentially harmonic numbers</a>, Scientia Magna, Vol. 2, No. 3 (2006), pp. 44-47. %H A348964 József Sándor, <a href="https://blngcc.files.wordpress.com/2008/11/jozsel-sandor-selected-chaters-of-geometry-analysis-and-number-theory.pdf">Selected Chapters of Geomety, Analysis and Number Theory</a>, 2005, pp. 141-145. %e A348964 The squarefree numbers are trivial terms. If k is squarefree, then it has a single exponential divisor, k itself, and thus the harmonic mean of its exponential divisors is also k, which is an integer. %e A348964 12 is a term since its exponential divisors are 6 and 12, and their harmonic mean, 8, is an integer. %t A348964 f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^(e-#) &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ] %Y A348964 A005117 and A348965 are subsequences. %Y A348964 Cf. A049419, A322791, A348961, A348963. %Y A348964 Similar sequences: A001599, A006086, A063947, A286325, A319745. %K A348964 nonn %O A348964 1,2 %A A348964 _Amiram Eldar_, Nov 05 2021