cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349008 Area of the convex hull around R5 dragon curve expansion level n.

This page as a plain text file.
%I A349008 #16 Dec 19 2024 11:46:19
%S A349008 0,2,16,106,578,2954,15064,75908,380334,1904330,9528618,47654840,
%T A349008 238295096,1191556256,5957936770,29789860126,148950201902,
%U A349008 744752899780,3723767329212,18618843605284,93094240114350,465471240742354,2327356261817746,11636781564585616
%N A349008 Area of the convex hull around R5 dragon curve expansion level n.
%C A349008 Expansion level n is the first 5^n segments of the curve and so the hull is around X,Y points located at X=A349195(t), Y=A349196(t) for t = 0..5^n.
%H A349008 Kevin Ryde, <a href="/A349008/b349008.txt">Table of n, a(n) for n = 0..400</a>
%H A349008 Kevin Ryde, <a href="http://user42.tuxfamily.org/r5dragon/index.html">Iterations of the R5 Dragon Curve</a>, see index "HA".
%H A349008 Kevin Ryde, <a href="/A349008/a349008.gp.txt">PARI/GP Code</a>
%F A349008 For n>=2, a(n) = 17*5^(n-2) - 1 + Sum_{j=1..n-2} ( (3*5^(n-2-j)-1)*HAgrow(2*b^j) + 2*5^(n-2-j)*HAgrow((4-i)*b^j) ),
%F A349008 where complex b=1+2*i and
%F A349008 HAgrow(z) = MinReIm(ShearRe(RotQ(z))),
%F A349008 MinReIm(z) = min(abs(Re z),abs(Im z)),
%F A349008 ShearRe(z) = z + Re(z),
%F A349008 RotQ(z) = z if sign(Re z) = sign(Im z) or RotQ(z) = z*i otherwise.
%e A349008 For n=2 the curve is:
%e A349008   @--@
%e A349008   |
%e A349008   *--*  *--*  *--@      Hull vertices "@".
%e A349008      |  |  |  |  |      Hull area a(2) = 16.
%e A349008   *--*--*--*--*--*
%e A349008   |  |  |  |  |
%e A349008   @--*  *--*  *--*
%e A349008                  |
%e A349008               @--@
%o A349008 (PARI) \\ See links.
%Y A349008 Cf. A349195, A349196 (coordinates).
%Y A349008 Cf. A349009 (fractal area).
%K A349008 nonn,easy
%O A349008 0,2
%A A349008 _Kevin Ryde_, Nov 06 2021