cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349009 Decimal expansion of the area of the convex hull around the R5 dragon fractal.

This page as a plain text file.
%I A349009 #11 Dec 19 2024 11:46:19
%S A349009 9,7,6,1,6,4,0,0,2,9,1,2,7,0,3,5,1,3,4,0,6,4,0,7,1,5,8,0,8,4,2,1,1,1,
%T A349009 2,9,7,2,6,3,1,2,1,9,9,3,1,7,3,2,6,9,0,5,2,4,3,4,9,4,8,8,0,3,0,0,8,2,
%U A349009 8,7,3,8,6,7,9,6,5,1,1,6,0,1,1,0,7,5,0,4,2,4,7,8,8,5,1,6,1,5,8,6,3,8,6,6,9
%N A349009 Decimal expansion of the area of the convex hull around the R5 dragon fractal.
%C A349009 The fractal is taken scaled to unit length from curve start to end.
%C A349009 In the sum formula below, all HAtermf(j) > 0 and a simple upper bound is Sum_{j>=k} HAtermf(j) < 1/sqrt(5)^k.
%H A349009 Kevin Ryde, <a href="/A349009/b349009.txt">Table of n, a(n) for n = 0..10000</a>
%H A349009 Kevin Ryde, <a href="http://user42.tuxfamily.org/r5dragon/index.html">Iterations of the R5 Dragon Curve</a>, see index "HAf".
%H A349009 Kevin Ryde, <a href="/A349009/a349009.gp.txt">PARI/GP Code</a>
%F A349009 Equals 17/25 + Sum_{j>=1} HAtermf(j), where complex b=1+2*i and:
%F A349009 HAtermf(j) = (1/25)*(6*HAgrowf(1/b^j) + 2*HAgrowf((4+i)/b^j)),
%F A349009 HAgrowf(z) = MinReIm(ShearIm(RotQ(z))),
%F A349009 MinReIm(z) = min(abs(Re z), abs(Im z)),
%F A349009 ShearIm(z) = z + i*Im(z),
%F A349009 RotQ(z) = z if sign(Re z) = sign(Im z), or RotQ(z) = z*i otherwise.
%F A349009 Equals lim_{n->oo} A349008(n)/5^n.
%e A349009 0.97616400291270351340640715808421112...
%o A349009 (PARI) \\ See links.
%Y A349009 Cf. A349008 (finite areas), A349010 (fractal perimeter).
%K A349009 cons,nonn
%O A349009 0,1
%A A349009 _Kevin Ryde_, Nov 06 2021