A349010 Decimal expansion of the perimeter of the convex hull around the R5 dragon fractal.
3, 7, 4, 3, 6, 6, 9, 4, 4, 1, 2, 4, 6, 9, 8, 0, 0, 9, 8, 4, 9, 2, 2, 3, 3, 4, 0, 9, 8, 8, 2, 1, 4, 1, 3, 0, 4, 2, 3, 5, 1, 2, 7, 0, 3, 3, 9, 9, 4, 0, 5, 8, 4, 6, 3, 4, 6, 7, 8, 1, 2, 3, 2, 7, 4, 0, 2, 1, 9, 0, 1, 0, 8, 7, 9, 0, 1, 7, 0, 5, 9, 7, 2, 0, 0, 9, 1, 1, 2, 2, 3, 6, 7, 5, 7, 8, 6, 6, 2, 8, 6, 6, 1, 6, 2
Offset: 1
Examples
3.7436694412469800984922334098821413...
Links
- Kevin Ryde, Table of n, a(n) for n = 1..10000
- Kevin Ryde, Iterations of the R5 Dragon Curve, see index "HBf".
Crossrefs
Cf. A349009 (area).
Programs
-
Mathematica
RealDigits[(6 + 2*Sqrt[5] + 2*Sqrt[17])/5, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
-
PARI
my(c=352+32*quadgen(5*17*4)); a_vector(len) = my(s=10^(len-2)); digits(sqrtint(floor(c*s^2)) + floor(12*s));
Formula
Equals (6 + 2*sqrt(5) + 2*sqrt(17)) / 5.
Equals (sqrt(8*sqrt(5*17) + 88) + 6) / 5.
Largest root of 625*x^4 - 3000*x^3 + 1000*x^2 + 6240*x - 2736 = 0 (all roots are real).
Comments