This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349011 #7 Aug 19 2022 05:06:38 %S A349011 1,1,5,17,105,433,2925,13185,93425,443009,3233205,15840209,117950745, %T A349011 591187953,4466545245,22766535297,173906505825,897941153665, %U A349011 6918379345125,36089242700049,279988660639305,1472715584804529,11490841104036045,60857608450349313,477104721264920145 %N A349011 G.f. A(x) satisfies: A(x) = (1 - x * A(-x)) / (1 - 2 * x * A(x)). %F A349011 a(0) = 1; a(n) = (-1)^n * a(n-1) + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1). %p A349011 A349011 := proc(n) %p A349011 option remember ; %p A349011 if n = 0 then %p A349011 1; %p A349011 else %p A349011 (-1)^n*procname(n-1)+2*add(procname(k)*procname(n-k-1),k=0..n-1) ; %p A349011 end if; %p A349011 end proc: %p A349011 seq(A349011(n),n=0..40) ; # _R. J. Mathar_, Aug 19 2022 %t A349011 nmax = 24; A[_] = 0; Do[A[x_] = (1 - x A[-x])/(1 - 2 x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %t A349011 a[0] = 1; a[n_] := a[n] = (-1)^n a[n - 1] + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}] %Y A349011 Cf. A001003, A103210, A348957. %K A349011 nonn %O A349011 0,3 %A A349011 _Ilya Gutkovskiy_, Nov 05 2021