This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349022 #16 Aug 21 2023 08:22:53 %S A349022 1,4,22,152,1161,9460,80550,708172,6379368,58576168,546215580, %T A349022 5158542152,49239812893,474285453628,4604149947276,44999181550032, %U A349022 442430807369519,4372944634271688,43425156714959956,433049078716727332,4334925824762251939 %N A349022 G.f. satisfies A(x) = 1/(1 - x/(1 - x*A(x))^3)^4. %H A349022 Seiichi Manyama, <a href="/A349022/b349022.txt">Table of n, a(n) for n = 0..972</a> %F A349022 If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1). %p A349022 A349022 := proc(n) %p A349022 add(binomial(4*n-3*(k-1),k)*binomial(n+2*k-1,n-k)/(n-k+1),k=0..n) ; %p A349022 end proc: %p A349022 seq(A349022(n),n=0..40) ; # _R. J. Mathar_, Jan 25 2023 %o A349022 (PARI) a(n, s=3, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1)); %Y A349022 Cf. A006632, A161797, A161798. %K A349022 nonn %O A349022 0,2 %A A349022 _Seiichi Manyama_, Nov 06 2021