cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349024 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.

This page as a plain text file.
%I A349024 #9 Nov 06 2021 09:09:16
%S A349024 1,3,18,124,951,7764,66200,582594,5252133,48254668,450186720,
%T A349024 4253328540,40612877001,391300954065,3799506069816,37142836241690,
%U A349024 365255937037437,3610755090793272,35861607622930556,357670540310182842,3580797575489620740
%N A349024 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.
%F A349024 If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
%o A349024 (PARI) a(n, s=4, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
%Y A349024 Cf. A118971, A321798, A349023.
%K A349024 nonn
%O A349024 0,2
%A A349024 _Seiichi Manyama_, Nov 06 2021