cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349026 Exponential unitary harmonic numbers: numbers k such that the harmonic mean of the exponential unitary divisors of k is an integer.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2021

Keywords

Comments

First differs from A348964 at n = 102. a(102) = 144 is not an exponential harmonic number of type 2.
The exponential unitary divisors of n = Product p(i)^e(i) are all the numbers of the form Product p(i)^b(i) where b(i) is a unitary divisor of e(i) (see A278908).
Equivalently, numbers k such that A349025(k) | k * A278908(k).

Examples

			The squarefree numbers are trivial terms. If k is squarefree, then it has a single exponential unitary divisor, k itself, and thus the harmonic mean of its exponential unitary divisors is also k, which is an integer.
144 is a term since its exponential unitary divisors are 6, 18, 48 and 144, and their harmonic mean, 16, is an integer.
		

Crossrefs

Cf. A278908 (number of exponential unitary divisors), A322857, A322858, A323310, A349025, A349027.
Similar sequences: A001599, A006086, A063947, A286325, A319745, A348964.

Programs

  • Mathematica
    f[p_, e_] := p^e * 2^PrimeNu[e] / DivisorSum[e, p^(e - #) &, CoprimeQ[#, e/#] &]; euhQ[1] = True; euhQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], euhQ]