This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349039 #14 Nov 09 2021 15:02:28 %S A349039 0,1,1,4,1,4,9,3,3,9,16,7,4,7,16,25,13,7,7,13,25,36,21,12,9,12,21,36, %T A349039 49,31,19,13,13,19,31,49,64,43,28,19,16,19,28,43,64,81,57,39,27,21,21, %U A349039 27,39,57,81,100,73,52,37,28,25,28,37,52,73,100,121,91,67,49,37,31,31,37,49,67,91,121 %N A349039 Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) = n^2 - n*k + k^2. %C A349039 T(n, k) is the norm of the Eisenstein integer n + k*w (where w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity). %C A349039 All terms belong to A003136. %H A349039 Rémy Sigrist, <a href="/A349039/b349039.txt">Table of n, a(n) for n = 0..10010</a> %H A349039 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer#Euclidean_domain">Eisenstein integers: Euclidean domain</a> %F A349039 T(n, k) = T(k, n). %F A349039 T(n, 0) = T(n, n) = n^2. %F A349039 T(n, k) = A048147(n, k) - A004247(n, k). %F A349039 G.f.: (x - 5*x*y + y*(1 + y) + x^2*(1 + y^2))/((1 - x)^3*(1 - y)^3). - _Stefano Spezia_, Nov 08 2021 %e A349039 Array T(n, k) begins: %e A349039 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A349039 ---+---------------------------------------------- %e A349039 0| 0 1 4 9 16 25 36 49 64 81 100 %e A349039 1| 1 1 3 7 13 21 31 43 57 73 91 %e A349039 2| 4 3 4 7 12 19 28 39 52 67 84 %e A349039 3| 9 7 7 9 13 19 27 37 49 63 79 %e A349039 4| 16 13 12 13 16 21 28 37 48 61 76 %e A349039 5| 25 21 19 19 21 25 31 39 49 61 75 %e A349039 6| 36 31 28 27 28 31 36 43 52 63 76 %e A349039 7| 49 43 39 37 37 39 43 49 57 67 79 %e A349039 8| 64 57 52 49 48 49 52 57 64 73 84 %e A349039 9| 81 73 67 63 61 61 63 67 73 81 91 %e A349039 10| 100 91 84 79 76 75 76 79 84 91 100 %t A349039 T[n_, k_] := n^2 - n*k + k^2; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Nov 08 2021 *) %o A349039 (PARI) T(n,k) = n^2 - n*k + k^2 %Y A349039 Cf. A003136, A004247, A048147, A073254. %K A349039 nonn,tabl,easy %O A349039 0,4 %A A349039 _Rémy Sigrist_, Nov 06 2021