This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349040 #22 Dec 30 2024 01:19:22 %S A349040 0,1,0,1,0,0,-1,0,-1,0,-1,-1,-2,-2,-1,-1,-2,-2,-3,-2,-3,-2,-3,-3,-4, %T A349040 -3,-4,-3,-4,-4,-5,-5,-4,-4,-5,-5,-6,-6,-5,-5,-4,-5,-4,-4,-3,-3,-4,-4, %U A349040 -5,-5,-4,-4,-5,-5,-6,-5,-6,-5,-6,-6,-7,-6,-7,-6,-7,-7,-8 %N A349040 a(n) is the X-coordinate of the n-th point of the terdragon curve; sequence A349041 gives Y-coordinates. %C A349040 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity): %C A349040 Y %C A349040 / %C A349040 / %C A349040 0 ---- X %C A349040 The terdragon curve can be represented using an L-system. %C A349040 A062756, when interpreted as a sequence of directions A062756(n)*120 degrees, yields the same curve. %H A349040 Rémy Sigrist, <a href="/A349040/b349040.txt">Table of n, a(n) for n = 0..6561</a> %H A349040 Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~uno/fg.html">Selected Papers on Fun and Games</a>, 2011, pages 571-614. See section 5 delta(n) for zeta = third root of unity. %H A349040 Chandler Davis and Donald E. Knuth, <a href="/A005811/a005811.pdf">Number Representations and Dragon Curves</a>, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. [Cached copy, with permission] %H A349040 Kevin Ryde, <a href="http://user42.tuxfamily.org/terdragon/index.html">Iterations of the Terdragon Curve</a>, see index "point". %H A349040 Rémy Sigrist, <a href="/A349040/a349040.png">Colored representation of the first 1 + 3^11 points of the terdragon curve</a> (where the hue is function of the number of steps from the origin) %H A349040 Rémy Sigrist, <a href="/A349040/a349040.gp.txt">PARI program for A349040</a> %H A349040 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dragon_curve#Terdragon">Terdragon</a> %H A349040 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %e A349040 The terdragon curve starts (on a hexagonal lattice) as follows: %e A349040 +-----+ %e A349040 8\ 9 %e A349040 \ %e A349040 +-----+7 %e A349040 6\ /4\ %e A349040 \5/ \ %e A349040 +-----+ %e A349040 2\ 3 %e A349040 \ %e A349040 +-----+ %e A349040 0 1 %e A349040 - so a(0) = a(2) = a(4) = a(5) = a(7) = a(9) = 0, %e A349040 a(1) = a(3) = 1, %e A349040 a(6) = a(8) = -1. %o A349040 (PARI) See Links section. %Y A349040 Cf. A080846 (turn), A062756 (segment direction), A349041. %K A349040 sign %O A349040 0,13 %A A349040 _Rémy Sigrist_, Nov 06 2021