This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349041 #15 Nov 14 2021 10:05:21 %S A349041 0,0,1,1,2,1,2,2,3,3,4,3,4,3,3,2,3,2,3,3,4,4,5,4,5,5,6,6,7,6,7,6,6,5, %T A349041 6,5,6,5,5,4,4,5,5,4,4,3,4,3,4,3,3,2,3,2,3,3,4,4,5,4,5,5,6,6,7,6,7,6, %U A349041 6,5,6,5,6,6,7,7,8,7,8,8,9,9,10,9,10,9 %N A349041 a(n) is the Y-coordinate of the n-th point of the terdragon curve; sequence A349040 gives X-coordinates. %C A349041 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity): %C A349041 Y %C A349041 / %C A349041 / %C A349041 0 ---- X %C A349041 The terdragon curve can be represented using an L-system. %C A349041 A265671, when interpreted as a sequence of directions, yields the same curve. %H A349041 Rémy Sigrist, <a href="/A349041/b349041.txt">Table of n, a(n) for n = 0..6561</a> %H A349041 Rémy Sigrist, <a href="/A349040/a349040.png">Colored representation of the first 1 + 3^11 points of the terdragon curve</a> (where the hue is function of the number of steps from the origin) %H A349041 Rémy Sigrist, <a href="/A349041/a349041.gp.txt">PARI program for A349041</a> %H A349041 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dragon_curve#Terdragon">Terdragon</a> %H A349041 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %e A349041 The terdragon curve starts (on a hexagonal lattice) as follows: %e A349041 +-----+ %e A349041 8\ 9 %e A349041 \ %e A349041 +-----+7 %e A349041 6\ /4\ %e A349041 \5/ \ %e A349041 +-----+ %e A349041 2\ 3 %e A349041 \ %e A349041 +-----+ %e A349041 0 1 %e A349041 - so a(0) = a(1) = 0, %e A349041 a(2) = a(3) = a(5) = 1, %e A349041 a(4) = a(6) = a(7) = 2, %e A349041 a(8) = a(9) = 3. %o A349041 (PARI) See Links section. %Y A349041 Cf. A080846, A265671, A349040. %K A349041 sign %O A349041 0,5 %A A349041 _Rémy Sigrist_, Nov 06 2021