A349042 Triangle read by rows in which row n >= 1 lists the count of 0's, ..., k's in all previous terms in the triangle. T(0,0) = 0, k is from [0..A049820(n)].
0, 1, 1, 1, 3, 1, 4, 1, 5, 0, 1, 2, 6, 1, 2, 7, 2, 1, 1, 1, 2, 10, 4, 1, 2, 2, 11, 6, 1, 2, 1, 2, 2, 13, 9, 1, 2, 1, 2, 2, 15, 12, 1, 2, 1, 2, 1, 0, 1, 3, 19, 14, 2, 2, 1, 2, 3, 20, 17, 3, 2, 1, 2, 1, 0, 1, 1, 1, 4, 25, 19, 4, 4, 1, 2, 1, 0, 1, 1, 5, 29, 20, 4, 6, 2, 3, 1, 0, 1, 1, 1
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 n=0: 0; n=1: 1; n=2: 1; n=3: 1, 3; n=4: 1, 4; n=5: 1, 5, 0, 1; n=6: 2, 6, 1; n=7: 2, 7, 2, 1, 1, 1;
Links
- Michael De Vlieger, Scatterplot of a(n) for n=0..31686, i.e., rows 0..256.
- Michael De Vlieger, Scatterplot of a(n)for n=0..518562, i.e., rows 0..1024
- Index entries for sequences related to the inventory sequence
Programs
-
Mathematica
c[] = 0; Reap[Do[w = {}; Array[(Set[m, c[#]]; c[m]++; AppendTo[w, m]) &, If[n == 0, 1, n - DivisorSigma[0, n] + 1], 0]; Sow[w], {n, 0, 15}]][[-1, -1]] // Flatten (* _Michael De Vlieger, Nov 09 2021 *)
-
Python
from collections import Counter from sympy import divisor_count def auptor(rows): alst, inventory = [0], Counter([0]) for m in range(1, rows): for k in range(m-divisor_count(m)+1): c = inventory[k]; alst.append(c); inventory.update([c]) return alst print(auptor(16)) # Michael S. Branicky, Nov 07 2021
Comments