cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349049 Number of prime factors (with multiplicity) of the denominator of the harmonic number H(n) = Sum_{k=1..n} 1/k.

This page as a plain text file.
%I A349049 #19 Jun 27 2025 15:30:08
%S A349049 0,1,2,3,4,3,4,5,7,7,8,8,9,9,9,10,11,10,11,10,9,9,10,11,13,13,15,15,
%T A349049 16,16,17,18,17,17,17,17,18,18,18,18,19,18,19,20,20,20,21,21,23,23,23,
%U A349049 23,24,23,23,23,23,23,24,24,25,25,24,25,25,24,25,25,26,26,27,28,29,29,29,29,28
%N A349049 Number of prime factors (with multiplicity) of the denominator of the harmonic number H(n) = Sum_{k=1..n} 1/k.
%F A349049 a(n) = A001222(A002805(n)).
%o A349049 (SageMath) [sloane.A001222(A002805(n)) for n in range(1, 78)]
%o A349049 (PARI) my(h=0); for(n=1,77,h+=1/n;print1(bigomega(denominator(h)),", ")); \\ _Joerg Arndt_, Nov 07 2021
%o A349049 (Python)
%o A349049 from sympy import harmonic, factorint
%o A349049 def a(n): return sum(factorint(harmonic(n).denominator).values())
%o A349049 print([a(n) for n in range(1, 78)]) # _Michael S. Branicky_, Nov 07 2021
%Y A349049 Cf. A001222, A002805, A308967.
%K A349049 nonn
%O A349049 1,3
%A A349049 _Kam Kong_, Nov 07 2021