This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349053 #16 Jan 31 2024 15:52:51 %S A349053 0,0,0,0,0,0,4,12,37,95,232,533,1198,2613,5619,11915,25011,52064, %T A349053 107694,221558,453850,926309,1884942,3825968,7749312,15667596, %U A349053 31628516,63766109,128415848,258365323,519392582,1043405306,2094829709,4203577778,8431313237,16904555958 %N A349053 Number of non-weakly alternating integer compositions of n. %C A349053 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is (strongly) alternating iff it is a weakly alternating anti-run. %H A349053 Andrew Howroyd, <a href="/A349053/b349053.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..55 from Martin Ehrenstein) %H A349053 Wikipedia, <a href="https://en.wikipedia.org/wiki/Alternating_permutation">Alternating permutation</a> %F A349053 a(n) = A011782(n) - A349052(n). %e A349053 The a(6) = 12 compositions: %e A349053 (1,1,2,2,1) (1,1,2,3) (1,2,4) %e A349053 (1,2,1,1,2) (1,2,3,1) (4,2,1) %e A349053 (1,2,2,1,1) (1,3,2,1) %e A349053 (2,1,1,2,1) (2,1,1,3) %e A349053 (3,1,1,2) %e A349053 (3,2,1,1) %t A349053 wwkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]||And@@Table[If[EvenQ[m],y[[m]]>=y[[m+1]],y[[m]]<=y[[m+1]]],{m,1,Length[y]-1}]; %t A349053 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wwkQ[#]&]],{n,0,10}] %Y A349053 Complementary directed versions are A129852/A129853, strong A025048/A025049. %Y A349053 The strong version is A345192. %Y A349053 The complement is counted by A349052. %Y A349053 These compositions are ranked by A349057, strong A345168. %Y A349053 The complementary version for patterns is A349058, strong A345194. %Y A349053 The complementary multiplicative version is A349059, strong A348610. %Y A349053 An unordered version (partitions) is A349061, complement A349060. %Y A349053 The version for ordered prime factorizations is A349797, complement A349056. %Y A349053 The version for patterns is A350138, strong A350252. %Y A349053 The version for ordered factorizations is A350139. %Y A349053 A001250 counts alternating permutations, complement A348615. %Y A349053 A001700 counts compositions of 2n with alternating sum 0. %Y A349053 A003242 counts Carlitz (anti-run) compositions. %Y A349053 A011782 counts compositions, unordered A000041. %Y A349053 A025047 counts alternating compositions, ranked by A345167. %Y A349053 A106356 counts compositions by number of maximal anti-runs. %Y A349053 A344604 counts alternating compositions with twins. %Y A349053 A345164 counts alternating ordered prime factorizations. %Y A349053 A349054 counts strict alternating compositions. %Y A349053 Cf. A102726, A114901, A128761, A261983, A333213, A333755, A344614, A344615, A345165, A345170, A345195, A349799, A349800, A350251, A350252. %K A349053 nonn %O A349053 0,7 %A A349053 _Gus Wiseman_, Dec 16 2021 %E A349053 a(21)-a(35) from _Martin Ehrenstein_, Jan 08 2022