This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349054 #21 Dec 23 2021 05:23:12 %S A349054 1,1,1,3,3,5,9,11,15,21,35,41,59,75,103,155,193,255,339,443,569,841, %T A349054 1019,1365,1743,2295,2879,3785,5151,6417,8301,10625,13567,17229,21937, %U A349054 27509,37145,45425,58345,73071,93409,115797,147391,182151,229553,297061,365625 %N A349054 Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n. %C A349054 A strict composition of n is a finite sequence of distinct positive integers summing to n. %C A349054 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. %C A349054 The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838. %H A349054 Wikipedia, <a href="https://en.wikipedia.org/wiki/Alternating_permutation">Alternating permutation</a> %F A349054 a(n) = 2 * A129838(n) - 1. %F A349054 G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k). %e A349054 The a(1) = 1 through a(7) = 11 compositions: %e A349054 (1) (2) (3) (4) (5) (6) (7) %e A349054 (1,2) (1,3) (1,4) (1,5) (1,6) %e A349054 (2,1) (3,1) (2,3) (2,4) (2,5) %e A349054 (3,2) (4,2) (3,4) %e A349054 (4,1) (5,1) (4,3) %e A349054 (1,3,2) (5,2) %e A349054 (2,1,3) (6,1) %e A349054 (2,3,1) (1,4,2) %e A349054 (3,1,2) (2,1,4) %e A349054 (2,4,1) %e A349054 (4,1,2) %p A349054 g:= proc(u, o) option remember; %p A349054 `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u)) %p A349054 end: %p A349054 b:= proc(n, k) option remember; `if`(k<0 or n<0, 0, %p A349054 `if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1))) %p A349054 end: %p A349054 a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1: %p A349054 seq(a(n), n=0..46); # _Alois P. Heinz_, Dec 22 2021 %t A349054 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A349054 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],wigQ]],{n,0,15}] %Y A349054 Ranking sequences are put in parentheses below. %Y A349054 This is the strict case of A025047/A025048/A025049 (A345167). %Y A349054 This is the alternating case of A032020 (A233564). %Y A349054 The unordered case (partitions) is A065033. %Y A349054 The directed case is A129838. %Y A349054 A001250 = alternating permutations (A349051), complement A348615 (A350250). %Y A349054 A003242 = Carlitz (anti-run) compositions, complement A261983. %Y A349054 A011782 = compositions, unordered A000041. %Y A349054 A345165 = partitions without an alternating permutation (A345171). %Y A349054 A345170 = partitions with an alternating permutation (A345172). %Y A349054 A345192 = non-alternating compositions (A345168). %Y A349054 A345195 = non-alternating anti-run compositions (A345169). %Y A349054 A349800 = weakly but not strongly alternating compositions (A349799). %Y A349054 A349052 = weakly alternating compositions, complement A349053 (A349057). %Y A349054 Cf. A000111, A008965, A015723, A114901, A128761, A129852, A129853, A218074, A333213, A344614, A345164, A345194, A349060, A349795. %K A349054 nonn %O A349054 0,4 %A A349054 _Gus Wiseman_, Dec 21 2021