cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349056 Number of weakly alternating permutations of the multiset of prime factors of n.

This page as a plain text file.
%I A349056 #10 Dec 10 2021 11:12:22
%S A349056 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,3,1,3,2,2,1,4,1,2,1,3,1,4,1,1,2,2,
%T A349056 2,4,1,2,2,4,1,4,1,3,3,2,1,5,1,3,2,3,1,4,2,4,2,2,1,6,1,2,3,1,2,4,1,3,
%U A349056 2,4,1,6,1,2,3,3,2,4,1,5,1,2,1,6,2,2,2
%N A349056 Number of weakly alternating permutations of the multiset of prime factors of n.
%C A349056 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is alternating in the sense of A025047 iff it is a weakly alternating anti-run.
%C A349056 A prime index of n is a number m such that prime(m) divides n. For n > 1, the multiset of prime factors of n is row n of A027746. The prime indices A112798 can also be used.
%e A349056 The following are the weakly alternating permutations for selected n:
%e A349056 n = 2   6    12    24     48      60     90     120     180
%e A349056    ----------------------------------------------------------
%e A349056     2   23   223   2223   22223   2253   2335   22253   22335
%e A349056         32   232   2232   22232   2325   2533   22325   22533
%e A349056              322   2322   22322   2523   3253   22523   23253
%e A349056                    3222   23222   3252   3325   23252   23352
%e A349056                           32222   3522   3352   25232   25233
%e A349056                                   5232   3523   32225   25332
%e A349056                                          5233   32522   32325
%e A349056                                          5332   35222   32523
%e A349056                                                 52223   33252
%e A349056                                                 52322   33522
%e A349056                                                         35232
%e A349056                                                         52323
%e A349056                                                         53322
%t A349056 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A349056 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
%t A349056 Table[Length[Select[Permutations[primeMS[n]],whkQ[#]||whkQ[-#]&]],{n,100}]
%Y A349056 Counting all permutations of prime factors gives A008480.
%Y A349056 The variation counting anti-run permutations is A335452.
%Y A349056 The strong case is A345164, with twins A344606.
%Y A349056 Compositions of this type are counted by A349052, also A129852 and A129853.
%Y A349056 Compositions not of this type are counted by A349053, ranked by A349057.
%Y A349056 The version for patterns is A349058, strong A345194.
%Y A349056 The version for ordered factorizations is A349059, strong A348610.
%Y A349056 Partitions of this type are counted by A349060, complement A349061.
%Y A349056 The complement is counted by A349797.
%Y A349056 The non-alternating case is A349798.
%Y A349056 A001250 counts alternating permutations, complement A348615.
%Y A349056 A003242 counts Carlitz (anti-run) compositions.
%Y A349056 A025047 counts alternating or wiggly compositions, ranked by A345167.
%Y A349056 A056239 adds up prime indices, row sums of A112798, row lengths A001222.
%Y A349056 A071321 gives the alternating sum of prime factors, reverse A071322.
%Y A349056 A344616 gives the alternating sum of prime indices, reverse A316524.
%Y A349056 A345165 counts partitions w/o an alternating permutation, ranked by A345171.
%Y A349056 A345170 counts partitions w/ an alternating permutation, ranked by A345172.
%Y A349056 A348379 counts factorizations with an alternating permutation.
%Y A349056 A349800 counts weakly but not strongly alternating compositions.
%Y A349056 Cf. A028234, A051119, A096441, A335433, A335448, A344614, A344652, A344653, A345173, A345192.
%K A349056 nonn
%O A349056 1,6
%A A349056 _Gus Wiseman_, Dec 02 2021