This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349056 #10 Dec 10 2021 11:12:22 %S A349056 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,3,1,3,2,2,1,4,1,2,1,3,1,4,1,1,2,2, %T A349056 2,4,1,2,2,4,1,4,1,3,3,2,1,5,1,3,2,3,1,4,2,4,2,2,1,6,1,2,3,1,2,4,1,3, %U A349056 2,4,1,6,1,2,3,3,2,4,1,5,1,2,1,6,2,2,2 %N A349056 Number of weakly alternating permutations of the multiset of prime factors of n. %C A349056 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is alternating in the sense of A025047 iff it is a weakly alternating anti-run. %C A349056 A prime index of n is a number m such that prime(m) divides n. For n > 1, the multiset of prime factors of n is row n of A027746. The prime indices A112798 can also be used. %e A349056 The following are the weakly alternating permutations for selected n: %e A349056 n = 2 6 12 24 48 60 90 120 180 %e A349056 ---------------------------------------------------------- %e A349056 2 23 223 2223 22223 2253 2335 22253 22335 %e A349056 32 232 2232 22232 2325 2533 22325 22533 %e A349056 322 2322 22322 2523 3253 22523 23253 %e A349056 3222 23222 3252 3325 23252 23352 %e A349056 32222 3522 3352 25232 25233 %e A349056 5232 3523 32225 25332 %e A349056 5233 32522 32325 %e A349056 5332 35222 32523 %e A349056 52223 33252 %e A349056 52322 33522 %e A349056 35232 %e A349056 52323 %e A349056 53322 %t A349056 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A349056 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; %t A349056 Table[Length[Select[Permutations[primeMS[n]],whkQ[#]||whkQ[-#]&]],{n,100}] %Y A349056 Counting all permutations of prime factors gives A008480. %Y A349056 The variation counting anti-run permutations is A335452. %Y A349056 The strong case is A345164, with twins A344606. %Y A349056 Compositions of this type are counted by A349052, also A129852 and A129853. %Y A349056 Compositions not of this type are counted by A349053, ranked by A349057. %Y A349056 The version for patterns is A349058, strong A345194. %Y A349056 The version for ordered factorizations is A349059, strong A348610. %Y A349056 Partitions of this type are counted by A349060, complement A349061. %Y A349056 The complement is counted by A349797. %Y A349056 The non-alternating case is A349798. %Y A349056 A001250 counts alternating permutations, complement A348615. %Y A349056 A003242 counts Carlitz (anti-run) compositions. %Y A349056 A025047 counts alternating or wiggly compositions, ranked by A345167. %Y A349056 A056239 adds up prime indices, row sums of A112798, row lengths A001222. %Y A349056 A071321 gives the alternating sum of prime factors, reverse A071322. %Y A349056 A344616 gives the alternating sum of prime indices, reverse A316524. %Y A349056 A345165 counts partitions w/o an alternating permutation, ranked by A345171. %Y A349056 A345170 counts partitions w/ an alternating permutation, ranked by A345172. %Y A349056 A348379 counts factorizations with an alternating permutation. %Y A349056 A349800 counts weakly but not strongly alternating compositions. %Y A349056 Cf. A028234, A051119, A096441, A335433, A335448, A344614, A344652, A344653, A345173, A345192. %K A349056 nonn %O A349056 1,6 %A A349056 _Gus Wiseman_, Dec 02 2021