This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349059 #6 Dec 10 2021 11:13:40 %S A349059 1,1,1,2,1,3,1,4,2,3,1,8,1,3,3,8,1,8,1,8,3,3,1,18,2,3,4,8,1,11,1,16,3, %T A349059 3,3,22,1,3,3,18,1,11,1,8,8,3,1,38,2,8,3,8,1,18,3,18,3,3,1,32,1,3,8, %U A349059 28,3,11,1,8,3,11,1,56,1,3,8,8,3,11,1,38,8,3 %N A349059 Number of weakly alternating ordered factorizations of n. %C A349059 An ordered factorization of n is a finite sequence of positive integers > 1 with product n. %C A349059 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. %F A349059 a(2^n) = A349052(n). %e A349059 The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30: %e A349059 (2) (4) (6) (8) (12) (24) (30) %e A349059 (2*2) (2*3) (2*4) (2*6) (3*8) (5*6) %e A349059 (3*2) (4*2) (3*4) (4*6) (6*5) %e A349059 (2*2*2) (4*3) (6*4) (10*3) %e A349059 (6*2) (8*3) (15*2) %e A349059 (2*2*3) (12*2) (2*15) %e A349059 (2*3*2) (2*12) (3*10) %e A349059 (3*2*2) (2*2*6) (2*5*3) %e A349059 (2*4*3) (3*2*5) %e A349059 (2*6*2) (3*5*2) %e A349059 (3*2*4) (5*2*3) %e A349059 (3*4*2) %e A349059 (4*2*3) %e A349059 (6*2*2) %e A349059 (2*2*2*3) %e A349059 (2*2*3*2) %e A349059 (2*3*2*2) %e A349059 (3*2*2*2) %t A349059 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A349059 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}]; %t A349059 Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}] %Y A349059 The strong version for compositions is A025047, also A025048, A025049. %Y A349059 The strong case is A348610, complement A348613. %Y A349059 The version for compositions is A349052, complement A349053. %Y A349059 As compositions these are ranked by the complement of A349057. %Y A349059 A001055 counts factorizations, strict A045778, ordered A074206. %Y A349059 A001250 counts alternating permutations, complement A348615. %Y A349059 A335434 counts separable factorizations, complement A333487. %Y A349059 A345164 counts alternating permutations of prime factors, w/ twins A344606. %Y A349059 A345170 counts partitions with an alternating permutation. %Y A349059 A348379 = factorizations w/ alternating permutation, complement A348380. %Y A349059 A348611 counts anti-run ordered factorizations, complement A348616. %Y A349059 A349060 counts weakly alternating partitions, complement A349061. %Y A349059 A349800 = weakly but not strongly alternating compositions, ranked A349799. %Y A349059 Cf. A003242, A122181, A138364, A339846, A339890, A345165, A345167, A345194, A347050, A347438, A347463, A347706. %K A349059 nonn %O A349059 1,4 %A A349059 _Gus Wiseman_, Dec 04 2021