This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349067 #16 Feb 16 2025 08:34:02 %S A349067 1,-4,-824,-406944,854857408,36727035808000,1350597603460566528, %T A349067 70169228831160001808384,5261285254051930823802720256, %U A349067 556216363355718012207356567863296,80574670961706857240366003306352640000,15573012689517863187913236259514917169004544 %N A349067 a(n) = H(3*n, n), where H(n,x) is n-th Hermite polynomial. %C A349067 In general, for k>=1, H(k*n,n) ~ exp(-k^2/4) * 2^(k*n) * n^(k*n). %H A349067 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>. %H A349067 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomial</a>. %F A349067 a(n) ~ exp(-9/4) * 2^(3*n) * n^(3*n). %p A349067 a:= n-> simplify(HermiteH(3*n, n)): %p A349067 seq(a(n), n=0..20); # _Alois P. Heinz_, Nov 07 2021 %t A349067 Table[HermiteH[3*n, n], {n, 0, 12}] %o A349067 (PARI) a(n) = polhermite(3*n, n); \\ _Michel Marcus_, Nov 07 2021 %Y A349067 Cf. A285270, A349066, A349069. %K A349067 sign %O A349067 0,2 %A A349067 _Vaclav Kotesovec_, Nov 07 2021