cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349068 a(n) = H(n, 2*n), where H(n,x) is n-th Hermite polynomial.

This page as a plain text file.
%I A349068 #20 Feb 16 2025 08:34:02
%S A349068 1,4,62,1656,62476,3041200,181253256,12779289376,1040259450512,
%T A349068 96008691963456,9906193528929760,1129945699713533824,
%U A349068 141183268107518731968,19176614030629200880384,2813353012562289110458496,443345766248682440278848000,74687922008799389150557901056
%N A349068 a(n) = H(n, 2*n), where H(n,x) is n-th Hermite polynomial.
%H A349068 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>.
%H A349068 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomial</a>.
%F A349068 a(n) ~ exp(-1/16) * 4^n * n^n.
%F A349068 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * ( n! / (k! * (n-2k)!) ) * (4n)^(n-2k), for n>0. - _Bernard Schott_, Nov 07 2021
%p A349068 a:= n-> simplify(HermiteH(n, 2*n)):
%p A349068 seq(a(n), n=0..20);  # _Alois P. Heinz_, Nov 07 2021
%t A349068 Table[HermiteH[n, 2*n], {n, 0, 20}]
%o A349068 (PARI) a(n) =  polhermite(n, 2*n); \\ _Michel Marcus_, Nov 07 2021
%Y A349068 Cf. A285270, A349066, A349069.
%K A349068 nonn
%O A349068 0,2
%A A349068 _Vaclav Kotesovec_, Nov 07 2021