This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349068 #20 Feb 16 2025 08:34:02 %S A349068 1,4,62,1656,62476,3041200,181253256,12779289376,1040259450512, %T A349068 96008691963456,9906193528929760,1129945699713533824, %U A349068 141183268107518731968,19176614030629200880384,2813353012562289110458496,443345766248682440278848000,74687922008799389150557901056 %N A349068 a(n) = H(n, 2*n), where H(n,x) is n-th Hermite polynomial. %H A349068 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>. %H A349068 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomial</a>. %F A349068 a(n) ~ exp(-1/16) * 4^n * n^n. %F A349068 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * ( n! / (k! * (n-2k)!) ) * (4n)^(n-2k), for n>0. - _Bernard Schott_, Nov 07 2021 %p A349068 a:= n-> simplify(HermiteH(n, 2*n)): %p A349068 seq(a(n), n=0..20); # _Alois P. Heinz_, Nov 07 2021 %t A349068 Table[HermiteH[n, 2*n], {n, 0, 20}] %o A349068 (PARI) a(n) = polhermite(n, 2*n); \\ _Michel Marcus_, Nov 07 2021 %Y A349068 Cf. A285270, A349066, A349069. %K A349068 nonn %O A349068 0,2 %A A349068 _Vaclav Kotesovec_, Nov 07 2021