This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349070 #19 Nov 09 2021 05:25:34 %S A349070 1,1,1351,3880899,28355806081,429364731169925,11731978174095849671, %T A349070 525735133485219615486151,36049049892983023583045990401, %U A349070 3588952618789973294871796462342089,497937643558017209960022199517744044999,93156956377055671178035977181412016527566091 %N A349070 a(n) = T(3*n, n), where T(n, x) is the Chebyshev polynomial of the first kind. %C A349070 In general, for k>=1, T(k*n, n) ~ 2^(k*n - 1) * n^(k*n). %H A349070 Seiichi Manyama, <a href="/A349070/b349070.txt">Table of n, a(n) for n = 0..136</a> %H A349070 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html">Chebyshev Polynomial of the First Kind</a>. %H A349070 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %F A349070 a(n) = cosh(3*n*arccosh(n)). %F A349070 a(n) = ((n + sqrt(n^2-1))^(3*n) + (n - sqrt(n^2-1))^(3*n))/2. %F A349070 a(n) ~ 2^(3*n-1) * n^(3*n). %t A349070 Table[ChebyshevT[3*n, n], {n, 0, 13}] %o A349070 (PARI) a(n) = polchebyshev(3*n, 1, n); \\ _Michel Marcus_, Nov 07 2021 %Y A349070 Cf. A053120, A115066, A173129, A349072, A349074. %K A349070 nonn %O A349070 0,3 %A A349070 _Vaclav Kotesovec_, Nov 07 2021