This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349073 #20 Feb 16 2025 08:34:02 %S A349073 1,3,209,40391,15003009,9127651499,8254109243953,10393834843080975, %T A349073 17391182043967249409,37326390852372133364819, %U A349073 99976027392046047055178001,326887883645157139828711692503,1281398359905415379814555044995201,5932135472283024519893762690145006075 %N A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind. %H A349073 Seiichi Manyama, <a href="/A349073/b349073.txt">Table of n, a(n) for n = 0..193</a> %H A349073 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html">Chebyshev Polynomial of the Second Kind</a>. %H A349073 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %F A349073 For n>1, a(n) = ((n + sqrt(n^2-1))^(2*n+1) - (n - sqrt(n^2-1))^(2*n+1)) / (2*sqrt(n^2-1)). %F A349073 a(n) ~ 2^(2*n) * n^(2*n). %t A349073 Table[ChebyshevU[2*n, n], {n, 0, 15}] %o A349073 (PARI) a(n) = polchebyshev(2*n, 2, n); \\ _Michel Marcus_, Nov 07 2021 %o A349073 (Python) %o A349073 from sympy import chebyshevu %o A349073 def A349073(n): return chebyshevu(n<<1,n) # _Chai Wah Wu_, Nov 08 2023 %Y A349073 Cf. A173129, A323118, A349071, A349074, A349075. %K A349073 nonn %O A349073 0,2 %A A349073 _Vaclav Kotesovec_, Nov 07 2021