This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349074 #22 Feb 16 2025 08:34:02 %S A349074 1,4,2911,7997214,57641556673,867583274883920,23630375698358890319, %T A349074 1056918444955456528983706,72383076947075470731692782081, %U A349074 7200266529428094485775774835670652,998383804974887102441600687728515247999,186701261436825568741051032736345268517903734 %N A349074 a(n) = U(3*n, n), where U(n, x) is the Chebyshev polynomial of the second kind. %C A349074 In general, for k>=1, U(k*n, n) ~ 2^(k*n) * n^(k*n). %H A349074 Seiichi Manyama, <a href="/A349074/b349074.txt">Table of n, a(n) for n = 0..136</a> %H A349074 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html">Chebyshev Polynomial of the Second Kind</a>. %H A349074 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %F A349074 For n>1, a(n) = ((n + sqrt(n^2-1))^(3*n+1) - (n - sqrt(n^2-1))^(3*n+1)) / (2*sqrt(n^2-1)). %F A349074 a(n) ~ 2^(3*n) * n^(3*n). %t A349074 Table[ChebyshevU[3*n, n], {n, 0, 13}] %o A349074 (PARI) a(n) = polchebyshev(3*n, 2, n); \\ _Michel Marcus_, Nov 07 2021 %o A349074 (Python) %o A349074 from sympy import chebyshevu %o A349074 def A349074(n): return chebyshevu(3*n,n) # _Chai Wah Wu_, Nov 08 2023 %Y A349074 Cf. A323118, A349070, A349073, A349076. %K A349074 nonn %O A349074 0,2 %A A349074 _Vaclav Kotesovec_, Nov 07 2021