cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349113 a(n) = 8^n * P(3*n, n), where P(n, x) is n-th Legendre polynomial.

This page as a plain text file.
%I A349113 #11 Feb 16 2025 08:34:02
%S A349113 1,8,40636,748832256,37759888297756,4086692369433395200,
%T A349113 815254385427670754825764,270587150855247020644760551424,
%U A349113 138859707622050969870951620062449436,104286590422721059977069662227099300134912,109828573459404650800550127862919905133973562480
%N A349113 a(n) = 8^n * P(3*n, n), where P(n, x) is n-th Legendre polynomial.
%C A349113 In general, for k>=1, P(k*n, n) ~ 2^(k*n) * n^(k*n) / sqrt(k*Pi*n).
%H A349113 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%H A349113 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%F A349113 a(n) ~ 2^(6*n) * n^(3*n - 1/2) / sqrt(3*Pi).
%t A349113 Table[8^n*LegendreP[3*n, n], {n, 0, 12}]
%o A349113 (PARI) a(n) = 8^n*pollegendre(3*n, n); \\ _Michel Marcus_, Nov 08 2021
%Y A349113 Cf. A008316, A110129, A349077, A349115.
%K A349113 nonn
%O A349113 0,2
%A A349113 _Vaclav Kotesovec_, Nov 08 2021