cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349115 a(n) = 8^n * P(n, 3*n), where P(n, x) is n-th Legendre polynomial.

This page as a plain text file.
%I A349115 #12 Feb 16 2025 08:34:02
%S A349115 1,24,3424,926208,369378816,194988441600,128184980586496,
%T A349115 100904418485993472,92542260511611682816,96909547417109671182336,
%U A349115 114095278582299648325582848,149184455262733048487847395328,214496285274348399077675463868416,336346643957900669242934177071890432
%N A349115 a(n) = 8^n * P(n, 3*n), where P(n, x) is n-th Legendre polynomial.
%C A349115 In general, for k>=1, P(n, k*n) ~ 2^n * k^n * n^(n - 1/2) / sqrt(Pi).
%H A349115 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%H A349115 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%F A349115 a(n) ~ 2^(4*n) * 3^n * n^(n - 1/2) / sqrt(Pi).
%t A349115 Table[8^n*LegendreP[n, 3*n], {n, 0, 15}]
%o A349115 (PARI) a(n) = 8^n*pollegendre(n, 3*n); \\ _Michel Marcus_, Nov 08 2021
%Y A349115 Cf. A008316, A110129, A349113, A349114.
%K A349115 nonn
%O A349115 0,2
%A A349115 _Vaclav Kotesovec_, Nov 08 2021