This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349118 #32 Nov 28 2021 13:46:33 %S A349118 1,5,3,18,8,47,18,100,35,185,61,310,98,483,148,712,213,1005,295,1370, %T A349118 396,1815,518,2348,663,2977,833,3710,1030,4555,1256,5520,1513,6613, %U A349118 1803,7842,2128,9215,2490,10740,2891,12425,3333,14278,3818,16307,4348,18520,4925 %N A349118 Row sums of a triangle based on A261327. %C A349118 The following triangle has A261327 as its diagonals: %C A349118 1 %C A349118 5 %C A349118 1 2 %C A349118 5 13 %C A349118 1 2 5 %C A349118 5 13 29 %C A349118 1 2 5 10 %C A349118 5 13 29 53 %C A349118 1 2 5 10 17 %C A349118 5 13 29 53 85 %C A349118 ... %C A349118 a(0) = a(1) = 0. %C A349118 a(n)'s final digit: neither 4 nor 9. %C A349118 First full bisection difference table: %C A349118 0, 1, 3, 8, 18, 35, 61, 98, ... = 0, A081489 = b(n) %C A349118 1, 2, 5, 10, 17, 26, 37, 50, ... = A002522 %C A349118 1, 3, 5, 7, 9, 11, 13, 15, ... = A005408 %C A349118 2, 2, 2, 2, 2, 2, 2, 2, ... = A007395 %C A349118 0, 0, 0, 0, 0, 0, 0, 0, ... = A000004 %C A349118 Second full bisection difference table: %C A349118 0, 5, 18, 47, 100, 185, 310, 483, ... = c(n) %C A349118 5, 13, 29, 53, 85, 125, 173, 229, ... = A078370 %C A349118 8, 16, 24, 32, 40, 48, 56, 64, ... = A008590(n+1) %C A349118 8, 8, 8, 8, 8, 8, 8, 8, ... = A010731 %C A349118 0, 0, 0, 0, 0, 0, 0, 0, ... = A000004 %C A349118 Both bisections are cubic polynomials. %C A349118 c(-n) = -c(n). %H A349118 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1). %F A349118 G.f.: (5*x^5+2*x^4-2*x^3-x^2+5*x+1)/((x-1)^4*(x+1)^4). %t A349118 LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {1, 5, 3, 18, 8, 47, 18, 100}, 50] (* _Amiram Eldar_, Nov 08 2021 *) %Y A349118 Cf. A002522, A005408, A007395, A078370, A081489 (first bisection). %Y A349118 Cf. also A008590, A010731, A261327. %K A349118 nonn,easy %O A349118 2,2 %A A349118 _Paul Curtz_, Nov 08 2021