cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349118 Row sums of a triangle based on A261327.

This page as a plain text file.
%I A349118 #32 Nov 28 2021 13:46:33
%S A349118 1,5,3,18,8,47,18,100,35,185,61,310,98,483,148,712,213,1005,295,1370,
%T A349118 396,1815,518,2348,663,2977,833,3710,1030,4555,1256,5520,1513,6613,
%U A349118 1803,7842,2128,9215,2490,10740,2891,12425,3333,14278,3818,16307,4348,18520,4925
%N A349118 Row sums of a triangle based on A261327.
%C A349118 The following triangle has A261327 as its diagonals:
%C A349118   1
%C A349118       5
%C A349118   1       2
%C A349118       5       13
%C A349118   1       2        5
%C A349118       5       13       29
%C A349118   1       2        5        10
%C A349118       5       13       29        53
%C A349118   1       2        5        10        17
%C A349118       5       13       29        53        85
%C A349118   ...
%C A349118 a(0) = a(1) = 0.
%C A349118 a(n)'s final digit: neither 4 nor 9.
%C A349118 First full bisection difference table:
%C A349118   0,  1,  3,  8,  18,  35,  61,  98, ...    = 0, A081489 = b(n)
%C A349118   1,  2,  5, 10,  17,  26,  37,  50, ...    = A002522
%C A349118   1,  3,  5,  7,   9,  11,  13,  15, ...    = A005408
%C A349118   2,  2,  2,  2,   2,   2,   2,   2, ...    = A007395
%C A349118   0,  0,  0,  0,   0,   0,   0,   0, ...    = A000004
%C A349118 Second full bisection difference table:
%C A349118   0,   5,  18,  47, 100, 185, 310, 483, ...    = c(n)
%C A349118   5,  13,  29,  53,  85, 125, 173, 229, ...    = A078370
%C A349118   8,  16,  24,  32,  40,  48,  56,  64, ...    = A008590(n+1)
%C A349118   8,   8,   8,   8,   8,   8,   8,   8, ...    = A010731
%C A349118   0,   0,   0,   0,   0,   0,   0,   0, ...    = A000004
%C A349118 Both bisections are cubic polynomials.
%C A349118 c(-n) = -c(n).
%H A349118 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1).
%F A349118 G.f.: (5*x^5+2*x^4-2*x^3-x^2+5*x+1)/((x-1)^4*(x+1)^4).
%t A349118 LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {1, 5, 3, 18, 8, 47, 18, 100}, 50] (* _Amiram Eldar_, Nov 08 2021 *)
%Y A349118 Cf. A002522, A005408, A007395, A078370, A081489 (first bisection).
%Y A349118 Cf. also A008590, A010731, A261327.
%K A349118 nonn,easy
%O A349118 2,2
%A A349118 _Paul Curtz_, Nov 08 2021