cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349126 Sum of A064989 and its Dirichlet inverse, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

This page as a plain text file.
%I A349126 #27 Apr 21 2022 09:14:54
%S A349126 2,0,0,1,0,4,0,1,4,6,0,2,0,10,12,1,0,4,0,3,20,14,0,2,9,22,8,5,0,0,0,1,
%T A349126 28,26,30,4,0,34,44,3,0,0,0,7,12,38,0,2,25,9,52,11,0,8,42,5,68,46,0,6,
%U A349126 0,58,20,1,66,0,0,13,76,0,0,4,0,62,18,17,70,0,0,3,16,74,0,10,78,82,92,7,0,12,110,19,116
%N A349126 Sum of A064989 and its Dirichlet inverse, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.
%C A349126 Question: Are all terms nonnegative?
%C A349126 Answer: All terms certainly are >= 0. See _Sebastian Karlsson_'s Nov 13 2021 multiplicative formula for A349125. - _Antti Karttunen_, Apr 20 2022
%H A349126 Antti Karttunen, <a href="/A349126/b349126.txt">Table of n, a(n) for n = 1..20000</a>
%H A349126 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349126 a(n) = A064989(n) + A349125(n).
%F A349126 a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A064989(d) * A349125(n/d).
%F A349126 For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A064989(A030229(n)).
%F A349126 For all n >= 1, a(A001248(n)) = A280076(n).
%t A349126 f1[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := If[e == 1, If[p == 2, -1, -NextPrime[p, -1]], 0]; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a1[n] + a2[n]; Array[a, 100] (* _Amiram Eldar_, Nov 13 2021 *)
%o A349126 (PARI) A349126(n) = (A064989(n)+A349125(n)); \\ Needs also code from A349125.
%o A349126 (PARI) A349126(n) = if(1==n,2,-sumdiv(n, d, if(1==d||n==d,0,A064989(d)*A349125(n/d)))); \\ (This demonstrates the "cut convolution" formula) - _Antti Karttunen_, Nov 13 2021
%Y A349126 Cf. A001248, A064989, A030059, A030229, A280076, A349125.
%Y A349126 Cf. also A322581, A349135.
%Y A349126 Coincides with A349349 on odd numbers.
%K A349126 nonn,look
%O A349126 1,1
%A A349126 _Antti Karttunen_, Nov 13 2021