cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349133 Dirichlet convolution of A003415 with A003958, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

This page as a plain text file.
%I A349133 #11 Nov 14 2021 17:44:34
%S A349133 0,1,1,5,1,8,1,17,8,12,1,32,1,16,14,49,1,43,1,52,18,24,1,100,14,28,43,
%T A349133 72,1,87,1,129,26,36,22,151,1,40,30,168,1,119,1,112,91,48,1,276,20,
%U A349133 103,38,132,1,194,30,236,42,60,1,323,1,64,123,321,34,183,1,172,50,183,1,443,1,76,131,192,34,215,1,472
%N A349133 Dirichlet convolution of A003415 with A003958, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).
%H A349133 Antti Karttunen, <a href="/A349133/b349133.txt">Table of n, a(n) for n = 1..20000</a>
%F A349133 a(n) = Sum_{d|n} A003415(d) * A003958(n/d).
%F A349133 For all n >= 1, a(n) <= A349173(n).
%t A349133 f1[p_, e_] := e/p; f2[p_, e_] := (p - 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 09 2021 *)
%o A349133 (PARI)
%o A349133 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A349133 A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
%o A349133 A349133(n) = sumdiv(n,d,A003415(d)*A003958(n/d));
%Y A349133 Cf. A003415, A003958, A349129, A349130, A349131, A349132, A349173.
%K A349133 nonn
%O A349133 1,4
%A A349133 _Antti Karttunen_, Nov 09 2021