This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349143 #16 Nov 15 2021 01:32:15 %S A349143 0,1,1,9,1,16,1,51,13,22,1,114,1,28,25,233,1,145,1,168,31,40,1,590,21, %T A349143 46,106,222,1,310,1,939,43,58,37,915,1,64,49,896,1,406,1,330,262,76,1, %U A349143 2570,29,297,61,384,1,1012,49,1202,67,94,1,2040,1,100,340,3489,55,598,1,492,79,574,1,4457,1,118,360,546,55 %N A349143 a(n) = Sum_{d|n} A038040(d) * A348507(n/d), where A038040(n) = n*tau(n), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1). %C A349143 Dirichlet convolution of A348507 with A038040, which is the Dirichlet convolution of the identity function (A000027) with itself. %C A349143 Dirichlet convolution of the identity function (A000027) with A349140. %C A349143 Dirichlet convolution of sigma (A000203) with A349141. %C A349143 Dirichlet convolution of A060640 with A348971. %H A349143 Antti Karttunen, <a href="/A349143/b349143.txt">Table of n, a(n) for n = 1..16384</a> %F A349143 a(n) = Sum_{d|n} A038040(n/d) * A348507(d). %F A349143 a(n) = Sum_{d|n} d * A349140(n/d). %F A349143 a(n) = Sum_{d|n} A000203(d) * A349141(n/d). %F A349143 a(n) = Sum_{d|n} A060640(d) * A348971(n/d). %F A349143 For all n >= 1, a(n) >= A349123(n) >= A348983(n). %t A349143 f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, #*DivisorSigma[0, #]*(s[n/#] - n/#) &]; Array[a, 100] (* _Amiram Eldar_, Nov 08 2021 *) %o A349143 (PARI) %o A349143 A038040(n) = (n*numdiv(n)); %o A349143 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; %o A349143 A348507(n) = (A003959(n) - n); %o A349143 A349143(n) = sumdiv(n,d,A038040(d)*A348507(n/d)); %Y A349143 Cf. A000005, A000027, A000203, A003959, A038040, A060640, A348507, A348971, A349140, A349141, A349142. %Y A349143 Cf. also A349123, A348983. %K A349143 nonn %O A349143 1,4 %A A349143 _Antti Karttunen_, Nov 08 2021