This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349145 #32 Jul 15 2023 14:02:05 %S A349145 1,1,2,8,43,207,2391,15539,182078,2070189,35850460,338695058, %T A349145 10609401552,115445915555 %N A349145 Number of ordered n-tuples (x_1, x_2, x_3, ..., x_n) such that Sum_{k=1..n} k/x_k is an integer and x_k is an integer between 1 and n for 1 <= k <= n. %e A349145 1/1 + 2/1 = 3 and 3 is an integer. %e A349145 1/1 + 2/2 = 2 and 2 is an integer. %e A349145 1/2 + 2/1 = 5/2. %e A349145 1/2 + 2/2 = 3/2. %e A349145 So a(2) = 2. %o A349145 (Ruby) %o A349145 def A(n) %o A349145 return 1 if n == 0 %o A349145 cnt = 0 %o A349145 (1..n).to_a.repeated_permutation(n){|i| %o A349145 cnt += 1 if (1..n).inject(0){|s, j| s + j / i[j - 1].to_r}.denominator == 1 %o A349145 } %o A349145 cnt %o A349145 end %o A349145 def A349145(n) %o A349145 (0..n).map{|i| A(i)} %o A349145 end %o A349145 p A349145(6) %o A349145 (Python) %o A349145 from fractions import Fraction %o A349145 from itertools import product %o A349145 def A349145(n): return sum(1 for d in product(range(1,n+1),repeat=n) if sum(Fraction(i+1,j) for i, j in enumerate(d)).denominator == 1) # _Chai Wah Wu_, Nov 09 2021 %Y A349145 Cf. A073090, A349146. %K A349145 nonn,more %O A349145 0,3 %A A349145 _Seiichi Manyama_, Nov 08 2021 %E A349145 a(10)-a(13) from _Alois P. Heinz_, Nov 08 2021