A349147 Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.
1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0
Examples
The triangle starts 1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316 For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4. For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7. For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
Links
- R. J. Mathar, The Number of Runs of Words on a 2-letter Alphabet (2021)
Crossrefs
Formula
T(n,m) = T(m,n).
Sum_{m=0..n} T(n,m) = A000917(n-1) + A000984(n) = 1, 5, 26, 125, 574, ... - R. J. Mathar, Nov 09 2021
T(n,m) = binomial(n+m,n)*(2*n*m+n+m)/(n+m) for n+m >= 1.