This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349148 #39 Jul 15 2023 14:02:13 %S A349148 1,1,2,3,6,9,25,39,84,158,381,610,2175,3489,7252,24744,54658,89031, %T A349148 273604,443746,1690517,5261990,9399018,15470605,58261863,102574465 %N A349148 Number of unordered n-tuples {x_1, x_2, x_3, ..., x_n} such that Sum_{k=1..n} 1/x_k is an integer and x_k is an integer between 1 and n for 1 <= k <= n. %e A349148 1/1 + 1/1 = 2 and 2 is an integer. %e A349148 1/1 + 1/2 = 3/2. %e A349148 1/2 + 1/2 = 1 and 1 is an integer. %e A349148 So a(2) = 2. %o A349148 (Ruby) %o A349148 def A(n) %o A349148 return 1 if n == 0 %o A349148 cnt = 0 %o A349148 (1..n).to_a.repeated_combination(n){|i| %o A349148 cnt += 1 if (1..n).inject(0){|s, j| s + 1 / i[j - 1].to_r}.denominator == 1 %o A349148 } %o A349148 cnt %o A349148 end %o A349148 def A349148(n) %o A349148 (0..n).map{|i| A(i)} %o A349148 end %o A349148 p A349148(10) %o A349148 (Python) %o A349148 from math import lcm %o A349148 from itertools import combinations_with_replacement %o A349148 def A349148(n): %o A349148 k = lcm(*range(2,n+1)) %o A349148 dlist = (k//d for d in range(1,n+1)) %o A349148 return sum(1 for d in combinations_with_replacement(dlist,n) if sum(d) % k == 0) # _Chai Wah Wu_, Nov 09 2021 %Y A349148 Cf. A349146. %K A349148 nonn,more %O A349148 0,3 %A A349148 _Seiichi Manyama_, Nov 08 2021 %E A349148 a(16)-a(25) from _Alois P. Heinz_, Nov 08 2021