This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349151 #6 Nov 13 2021 10:22:50 %S A349151 1,2,4,6,8,9,15,16,18,24,25,32,35,36,49,50,54,60,64,72,77,81,96,98, %T A349151 100,121,128,135,140,143,144,150,162,169,196,200,216,221,225,240,242, %U A349151 256,288,289,294,308,315,323,324,338,361,375,384,392,400,437,441,450 %N A349151 Heinz numbers of integer partitions with alternating sum <= 1. %C A349151 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A349151 The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so these are also Heinz numbers of partitions with at most one odd conjugate part. %F A349151 Equals A000290 \/ A345958 decapitated. %e A349151 The terms and their prime indices begin: %e A349151 1: {} %e A349151 2: {1} %e A349151 4: {1,1} %e A349151 6: {1,2} %e A349151 8: {1,1,1} %e A349151 9: {2,2} %e A349151 15: {2,3} %e A349151 16: {1,1,1,1} %e A349151 18: {1,2,2} %e A349151 24: {1,1,1,2} %e A349151 25: {3,3} %e A349151 32: {1,1,1,1,1} %e A349151 35: {3,4} %e A349151 36: {1,1,2,2} %e A349151 49: {4,4} %t A349151 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A349151 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A349151 Select[Range[100],ats[Reverse[primeMS[#]]]<=1&] %Y A349151 The case of alternating sum 0 is A000290. %Y A349151 These partitions are counted by A100824. %Y A349151 These are the positions of 0's and 1's in A344616. %Y A349151 The case of alternating sum 1 is A345958. %Y A349151 The conjugate partitions are ranked by A349150. %Y A349151 A000041 counts integer partitions. %Y A349151 A056239 adds up prime indices, row sums of A112798. %Y A349151 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A349151 A106529 ranks balanced partitions, counted by A047993. %Y A349151 A122111 is a representation of partition conjugation. %Y A349151 A257991 counts odd prime indices. %Y A349151 A316524 gives the alternating sum of prime indices. %Y A349151 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A349151 A349157 ranks partitions with as many even parts as odd conjugate parts. %Y A349151 Cf. A000070, A000700, A001222, A027187, A027193, A215366, A277103, A277579, A326841, A349149, A349158. %K A349151 nonn %O A349151 1,2 %A A349151 _Gus Wiseman_, Nov 10 2021