A349152 Standard composition numbers of compositions into divisors. Numbers k such that all parts of the k-th composition in standard order are divisors of the sum of parts.
0, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 15, 16, 31, 32, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 127, 128, 136, 138, 139, 141, 142, 143, 162, 163, 168, 170, 171, 173, 174, 175, 177, 181, 182, 183, 184
Offset: 1
Keywords
Examples
The terms and corresponding compositions begin: 0: () 36: (3,3) 54: (1,2,1,2) 1: (1) 37: (3,2,1) 55: (1,2,1,1,1) 2: (2) 38: (3,1,2) 57: (1,1,3,1) 3: (1,1) 39: (3,1,1,1) 58: (1,1,2,2) 4: (3) 41: (2,3,1) 59: (1,1,2,1,1) 7: (1,1,1) 42: (2,2,2) 60: (1,1,1,3) 8: (4) 43: (2,2,1,1) 61: (1,1,1,2,1) 10: (2,2) 44: (2,1,3) 62: (1,1,1,1,2) 11: (2,1,1) 45: (2,1,2,1) 63: (1,1,1,1,1,1) 13: (1,2,1) 46: (2,1,1,2) 64: (7) 14: (1,1,2) 47: (2,1,1,1,1) 127: (1,1,1,1,1,1,1) 15: (1,1,1,1) 50: (1,3,2) 128: (8) 16: (5) 51: (1,3,1,1) 136: (4,4) 31: (1,1,1,1,1) 52: (1,2,3) 138: (4,2,2) 32: (6) 53: (1,2,2,1) 139: (4,2,1,1)
Crossrefs
Looking at length instead of parts gives A096199.
These composition are counted by A100346.
A version counting subsets instead of compositions is A125297.
A011782 counts compositions.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
Classes of standard compositions:
- Permutations are ranked by A333218.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],#==0||Divisible[Total[stc[#]],LCM@@stc[#]]&]
Comments