A349153 Numbers k such that the k-th composition in standard order has sum equal to twice its reverse-alternating sum.
0, 11, 12, 14, 133, 138, 143, 148, 155, 158, 160, 168, 179, 182, 188, 195, 198, 204, 208, 216, 227, 230, 236, 240, 248, 2057, 2066, 2071, 2077, 2084, 2091, 2094, 2101, 2106, 2111, 2120, 2131, 2134, 2140, 2149, 2154, 2159, 2164, 2171, 2174, 2192, 2211, 2214
Offset: 1
Keywords
Examples
The terms and corresponding compositions begin: 0: () 11: (2,1,1) 12: (1,3) 14: (1,1,2) 133: (5,2,1) 138: (4,2,2) 143: (4,1,1,1,1) 148: (3,2,3) 155: (3,1,2,1,1) 158: (3,1,1,1,2) 160: (2,6) 168: (2,2,4) 179: (2,1,3,1,1) 182: (2,1,2,1,2) 188: (2,1,1,1,3)
Crossrefs
These compositions are counted by A262977 up to 0's.
Except for 0, a subset of A345917.
The unreversed version is A348614.
The unreversed negative version is A349154.
The negative version is A349155.
A003242 counts Carlitz compositions.
A011782 counts compositions.
Cf. A000070, A000346, A001250, A001700, A008549, A027306, A058622, A088218, A114121, A120452, A294175.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Heinz number is given by A333219.
Classes of standard compositions:
Programs
-
Mathematica
stc[n_]:=Differences[ Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse; sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Select[Range[0,1000],Total[stc[#]]==2*sats[stc[#]]&]
Comments