A349154 Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.
0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1
Keywords
Examples
The terms and corresponding compositions begin: 0: () 12: (1,3) 160: (2,6) 193: (1,6,1) 195: (1,5,1,1) 198: (1,4,1,2) 204: (1,3,1,3) 216: (1,2,1,4) 240: (1,1,1,5) 2304: (3,9) 2561: (2,9,1) 2563: (2,8,1,1) 2566: (2,7,1,2) 2572: (2,6,1,3) 2584: (2,5,1,4)
Crossrefs
These compositions are counted by A224274 up to 0's.
Except for 0, a subset of A345919.
The reverse version is A349155.
A003242 counts Carlitz compositions.
A011782 counts compositions.
Cf. A000070, A000984, A008549, A027306, A058622, A088218, A114121, A120452, A262977, A294175, A345917, A349160.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
Classes of standard compositions:
Programs
-
Mathematica
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]
Comments