A349155 Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.
0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1
Keywords
Examples
The terms and corresponding compositions begin: 0: () 9: (3,1) 130: (6,2) 135: (5,1,1,1) 141: (4,1,2,1) 153: (3,1,3,1) 177: (2,1,4,1) 193: (1,6,1) 225: (1,1,5,1) 2052: (9,3) 2059: (8,2,1,1) 2062: (8,1,1,2) 2069: (7,2,2,1) 2074: (7,1,2,2) 2079: (7,1,1,1,1,1) 2089: (6,2,3,1) 2098: (6,1,3,2) 2103: (6,1,2,1,1,1)
Crossrefs
These compositions are counted by A224274 up to 0's.
The unreversed version is A349154.
A003242 counts Carlitz compositions.
A011782 counts compositions.
Cf. A000070, A000346, A001250, A001700, A008549, A027306, A058622, A088218, A114121, A120452, A262977, A294175, A345917.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Heinz number is given by A333219.
Classes of standard compositions:
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]
Comments