This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349156 #10 Dec 04 2021 12:37:48 %S A349156 1,0,0,1,1,5,3,13,11,21,28,54,31,99,111,125,165,295,259,488,425,648, %T A349156 933,1253,943,1764,2320,2629,2962,4563,3897,6840,6932,9187,11994, %U A349156 12840,12682,21635,25504,28892,28187,44581,42896,63259,66766,74463,104278,124752 %N A349156 Number of integer partitions of n whose mean is not an integer. %C A349156 Equivalently, partitions whose length does not divide their sum. %C A349156 By conjugation, also the number of integer partitions of n with greatest part not dividing n. %F A349156 a(n > 0) = A000041(n) - A067538(n). %e A349156 The a(3) = 1 through a(8) = 11 partitions: %e A349156 (21) (211) (32) (2211) (43) (332) %e A349156 (41) (3111) (52) (422) %e A349156 (221) (21111) (61) (431) %e A349156 (311) (322) (521) %e A349156 (2111) (331) (611) %e A349156 (421) (22211) %e A349156 (511) (32111) %e A349156 (2221) (41111) %e A349156 (3211) (221111) %e A349156 (4111) (311111) %e A349156 (22111) (2111111) %e A349156 (31111) %e A349156 (211111) %t A349156 Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}] %Y A349156 Below, "!" means either enumerative or set theoretical complement. %Y A349156 The version for nonempty subsets is !A051293. %Y A349156 The complement is counted by A067538, ranked by A316413. %Y A349156 The geometric version is !A067539, strict !A326625, ranked by !A326623. %Y A349156 The strict case is !A102627. %Y A349156 The version for prime factors is A175352, complement A078175. %Y A349156 The version for distinct prime factors is A176587, complement A078174. %Y A349156 The ordered version (compositions) is !A271654, ranked by !A096199. %Y A349156 The multiplicative version (factorizations) is !A326622, geometric !A326028. %Y A349156 The conjugate is ranked by !A326836. %Y A349156 The conjugate strict version is !A326850. %Y A349156 These partitions are ranked by A348551. %Y A349156 A000041 counts integer partitions. %Y A349156 A326567/A326568 give the mean of prime indices, conjugate A326839/A326840. %Y A349156 A236634 counts unbalanced partitions, complement of A047993. %Y A349156 A327472 counts partitions not containing their mean, complement of A237984. %Y A349156 Cf. A001700, A074761, A098743, A143773, A175397, A175761, A298423, A326027, A326641, A326842, A326849, A327778. %K A349156 nonn %O A349156 0,6 %A A349156 _Gus Wiseman_, Nov 14 2021