This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349157 #7 Jan 27 2022 20:46:03 %S A349157 1,4,6,15,16,21,24,25,35,60,64,77,84,90,91,96,100,121,126,140,143,150, %T A349157 210,221,240,247,256,289,297,308,323,336,351,360,364,375,384,400,437, %U A349157 462,484,490,495,504,525,529,546,551,560,572,585,600,625,667,686,726 %N A349157 Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts. %C A349157 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with the same number of even prime indices as odd conjugate prime indices. %C A349157 These are also partitions for which the number of even parts is equal to the positive alternating sum of the parts. %F A349157 A257992(a(n)) = A257991(A122111(a(n))). %e A349157 The terms and their prime indices begin: %e A349157 1: () %e A349157 4: (1,1) %e A349157 6: (2,1) %e A349157 15: (3,2) %e A349157 16: (1,1,1,1) %e A349157 21: (4,2) %e A349157 24: (2,1,1,1) %e A349157 25: (3,3) %e A349157 35: (4,3) %e A349157 60: (3,2,1,1) %e A349157 64: (1,1,1,1,1,1) %e A349157 77: (5,4) %e A349157 84: (4,2,1,1) %e A349157 90: (3,2,2,1) %e A349157 91: (6,4) %e A349157 96: (2,1,1,1,1,1) %t A349157 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A349157 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A349157 Select[Range[100],Count[primeMS[#],_?EvenQ]==Count[conj[primeMS[#]],_?OddQ]&] %Y A349157 A subset of A028260 (even bigomega), counted by A027187. %Y A349157 These partitions are counted by A277579. %Y A349157 This is the half-conjugate version of A325698, counted by A045931. %Y A349157 A000041 counts partitions, strict A000009. %Y A349157 A047993 counts balanced partitions, ranked by A106529. %Y A349157 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A349157 A100824 counts partitions with at most one odd part, ranked by A349150. %Y A349157 A108950/A108949 count partitions with more odd/even parts. %Y A349157 A122111 represents conjugation using Heinz numbers. %Y A349157 A130780/A171966 count partitions with more or equal odd/even parts. %Y A349157 A257991/A257992 count odd/even prime indices. %Y A349157 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A349157 Cf. A000700, A000712, A035363, A066207, A066208, A097613, A215366, A239241, A240009, A241638, A316523, A325700, A340604. %K A349157 nonn %O A349157 1,2 %A A349157 _Gus Wiseman_, Jan 21 2022