cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349157 Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts.

This page as a plain text file.
%I A349157 #7 Jan 27 2022 20:46:03
%S A349157 1,4,6,15,16,21,24,25,35,60,64,77,84,90,91,96,100,121,126,140,143,150,
%T A349157 210,221,240,247,256,289,297,308,323,336,351,360,364,375,384,400,437,
%U A349157 462,484,490,495,504,525,529,546,551,560,572,585,600,625,667,686,726
%N A349157 Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts.
%C A349157 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with the same number of even prime indices as odd conjugate prime indices.
%C A349157 These are also partitions for which the number of even parts is equal to the positive alternating sum of the parts.
%F A349157 A257992(a(n)) = A257991(A122111(a(n))).
%e A349157 The terms and their prime indices begin:
%e A349157     1: ()
%e A349157     4: (1,1)
%e A349157     6: (2,1)
%e A349157    15: (3,2)
%e A349157    16: (1,1,1,1)
%e A349157    21: (4,2)
%e A349157    24: (2,1,1,1)
%e A349157    25: (3,3)
%e A349157    35: (4,3)
%e A349157    60: (3,2,1,1)
%e A349157    64: (1,1,1,1,1,1)
%e A349157    77: (5,4)
%e A349157    84: (4,2,1,1)
%e A349157    90: (3,2,2,1)
%e A349157    91: (6,4)
%e A349157    96: (2,1,1,1,1,1)
%t A349157 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A349157 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A349157 Select[Range[100],Count[primeMS[#],_?EvenQ]==Count[conj[primeMS[#]],_?OddQ]&]
%Y A349157 A subset of A028260 (even bigomega), counted by A027187.
%Y A349157 These partitions are counted by A277579.
%Y A349157 This is the half-conjugate version of A325698, counted by A045931.
%Y A349157 A000041 counts partitions, strict A000009.
%Y A349157 A047993 counts balanced partitions, ranked by A106529.
%Y A349157 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A349157 A100824 counts partitions with at most one odd part, ranked by A349150.
%Y A349157 A108950/A108949 count partitions with more odd/even parts.
%Y A349157 A122111 represents conjugation using Heinz numbers.
%Y A349157 A130780/A171966 count partitions with more or equal odd/even parts.
%Y A349157 A257991/A257992 count odd/even prime indices.
%Y A349157 A316524 gives the alternating sum of prime indices (reverse: A344616).
%Y A349157 Cf. A000700, A000712, A035363, A066207, A066208, A097613, A215366, A239241, A240009, A241638, A316523, A325700, A340604.
%K A349157 nonn
%O A349157 1,2
%A A349157 _Gus Wiseman_, Jan 21 2022