This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349160 #11 Dec 10 2021 11:14:31 %S A349160 1,10,12,39,63,66,88,112,115,190,228,255,259,306,325,408,434,468,517, %T A349160 544,609,620,783,793,805,832,870,931,946,1150,1160,1204,1241,1242, %U A349160 1353,1380,1392,1534,1539,1656,1691,1722,1845,1900,2035,2067,2208,2296,2369 %N A349160 Numbers whose sum of prime indices is twice their reverse-alternating sum. %C A349160 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A349160 The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. %C A349160 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their reverse-alternating sum. %F A349160 A056239(a(n)) = 2*A344616(a(n)). %F A349160 A346700(a(n)) = 3*A346699(a(n)). %e A349160 The terms and their prime indices begin: %e A349160 1: () %e A349160 10: (3,1) %e A349160 12: (2,1,1) %e A349160 39: (6,2) %e A349160 63: (4,2,2) %e A349160 66: (5,2,1) %e A349160 88: (5,1,1,1) %e A349160 112: (4,1,1,1,1) %e A349160 115: (9,3) %e A349160 190: (8,3,1) %e A349160 228: (8,2,1,1) %e A349160 255: (7,3,2) %e A349160 259: (12,4) %e A349160 306: (7,2,2,1) %e A349160 325: (6,3,3) %e A349160 408: (7,2,1,1,1) %e A349160 434: (11,4,1) %e A349160 468: (6,2,2,1,1) %t A349160 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A349160 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A349160 Select[Range[1000],Total[primeMS[#]]==2*sats[primeMS[#]]&] %Y A349160 These partitions are counted by A006330 up to 0's. %Y A349160 The negative reverse version is A348617. %Y A349160 An ordered version is A349153, non-reverse A348614. %Y A349160 The non-reverse version is A349159. %Y A349160 A027193 counts partitions with rev-alt sum > 0, ranked by A026424. %Y A349160 A034871, A097805, A345197 count compositions by alternating sum. %Y A349160 A056239 adds up prime indices, row sums of A112798, row lengths A001222. %Y A349160 A103919 counts partitions by alternating sum, reverse A344612. %Y A349160 A325534 counts separable partitions, ranked by A335433. %Y A349160 A325535 counts inseparable partitions, ranked by A335448. %Y A349160 A346697 adds up odd-indexed prime indices. %Y A349160 A346698 adds up even-indexed prime indices. %Y A349160 Cf. A000984, A001700, A028260, A066207, A120452, A195017, A257991, A257992, A344607, A344609, A345958, A349155. %K A349160 nonn %O A349160 1,2 %A A349160 _Gus Wiseman_, Nov 25 2021