cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349173 Dirichlet convolution of A003415 with A003959, where A003415 is the arithmetic derivative and A003959 is fully multiplicative with a(p) = (p+1).

This page as a plain text file.
%I A349173 #14 Nov 19 2021 16:01:20
%S A349173 0,1,1,7,1,12,1,33,10,16,1,68,1,20,18,131,1,87,1,96,22,28,1,296,16,32,
%T A349173 67,124,1,167,1,473,30,40,26,449,1,44,34,428,1,215,1,180,147,52,1,
%U A349173 1128,22,171,42,208,1,510,34,560,46,64,1,881,1,68,187,1611,38,311,1,264,54,295,1,1871,1,80,203,292,38,359
%N A349173 Dirichlet convolution of A003415 with A003959, where A003415 is the arithmetic derivative and A003959 is fully multiplicative with a(p) = (p+1).
%H A349173 Antti Karttunen, <a href="/A349173/b349173.txt">Table of n, a(n) for n = 1..20000</a>
%F A349173 a(n) = Sum_{d|n} A003415(d) * A003959(n/d).
%F A349173 a(n) = Sum_{d|n} A349133(d) * A349356(n/d). - _Antti Karttunen_, Nov 16 2021
%F A349173 For all n >= 1, a(n) >= A349133(n).
%t A349173 f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 09 2021 *)
%o A349173 (PARI)
%o A349173 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A349173 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
%o A349173 A349173(n) = sumdiv(n,d,A003415(d)*A003959(n/d));
%Y A349173 Cf. A003415, A003959, A349129, A349133, A349170, A349171, A349172, A349356.
%K A349173 nonn
%O A349173 1,4
%A A349173 _Antti Karttunen_, Nov 09 2021