This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349190 #79 Jan 19 2025 12:05:33 %S A349190 1,2,3,4,5,6,7,8,9,48,24192 %N A349190 Numbers k such that k equals the product of the sum of its first i digits, with i going from 1 to the total number of digits of k. %C A349190 a(12) > 10^22 if it exists. - _Max Alekseyev_, Jan 19 2025 %e A349190 24192 is a term since 24192 = 2*(2+4)*(2+4+1)*(2+4+1+9)*(2+4+1+9+2). %t A349190 Select[Range[10^5],Times@@Total/@Table[IntegerDigits[#][[;;k]],{k,IntegerLength@#}]==#&] (* _Giorgos Kalogeropoulos_, Nov 10 2021 *) %o A349190 (Python) %o A349190 def main(N): # prints all terms <= N %o A349190 for k in range(1,N+1): %o A349190 n1=str(k) %o A349190 n2 = 1 %o A349190 for i in range(1,len(n1)+1): %o A349190 sum1 = 0 %o A349190 for j in range(0,i): %o A349190 sum1 += int(n1[j]) %o A349190 n2 = n2*sum1 %o A349190 if n2 == k: %o A349190 print(k, end=", ") %o A349190 (PARI) isok(k) = {my(d=digits(k)); prod(i=1, #d, sum(j=1, i, d[j])) == k;} \\ _Michel Marcus_, Nov 10 2021 %o A349190 (Python) %o A349190 from itertools import islice, accumulate, count %o A349190 from math import prod %o A349190 def A349190gen(): return filter(lambda n:prod(accumulate(int(d) for d in str(n))) == n,count(1)) # generator of terms %o A349190 A349190_list = list(islice(A349190gen(),11)) # _Chai Wah Wu_, Dec 02 2021 %Y A349190 Cf. A055642, A349194, A349279. %K A349190 nonn,base,more %O A349190 1,2 %A A349190 _Malo David_, Nov 09 2021