This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349197 #15 Dec 30 2024 01:20:02 %S A349197 0,1,0,1,1,2,2,3,2,3,2,2,1,2,1,2,1,1,0,1,0,1,1,2,2,3,2,3,3,4,4,3,3,2, %T A349197 2,3,3,4,3,4,4,5,5,6,5,6,6,7,7,6,6,5,5,6,6,7,6,7,7,8,8,9,8,9,8,8,7,8, %U A349197 7,8,7,7,6,7,6,7,7,8,8,9,8,9,8,8,7,8,7 %N A349197 a(n) is the X-coordinate of the n-th point of the alternate terdragon curve; sequence A349198 gives Y-coordinates. %C A349197 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity): %C A349197 Y %C A349197 / %C A349197 / %C A349197 0 ---- X %C A349197 The alternate terdragon curve can be represented using an L-system. %H A349197 Rémy Sigrist, <a href="/A349197/b349197.txt">Table of n, a(n) for n = 0..6561</a> %H A349197 Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~uno/fg.html">Selected Papers on Fun and Games</a>, 2011, pages 571-614. See end of section 5. %H A349197 Chandler Davis and Donald E. Knuth, <a href="/A005811/a005811.pdf">Number Representations and Dragon Curves</a>, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. [Cached copy, with permission] %H A349197 Kevin Ryde, <a href="http://user42.tuxfamily.org/terdragon/index.html">Iterations of the Terdragon Curve</a>, see index "AltPoint". %H A349197 Rémy Sigrist, <a href="/A349197/a349197.png">Colored representation of the first 1 + 9^6 points of the alternate terdragon curve</a> (where the hue is function of the number of steps from the origin) %H A349197 Rémy Sigrist, <a href="/A349197/a349197.gp.txt">PARI program for A349197</a> %H A349197 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A349197 a(9^k) = 3^k for any k >= 0. %F A349197 a(9*n) = 3*a(n). %e A349197 The alternate terdragon curve starts as follows: %e A349197 14 %e A349197 \ %e A349197 \ %e A349197 2----3,12--10,13 %e A349197 \ / \ / \ %e A349197 \ / \ / \ %e A349197 0----1,4--5,8,11--9 %e A349197 / \ %e A349197 / \ %e A349197 6-----7 %e A349197 - so a(0) = a(2) = 0, %e A349197 a(1) = a(3) = a(4) = a(12) = a(14) = 1. %o A349197 (PARI) See Links section. %Y A349197 See A349040 for a similar sequence. %Y A349197 Cf. A349198. %K A349197 nonn %O A349197 0,6 %A A349197 _Rémy Sigrist_, Nov 10 2021