A349198 a(n) is the Y-coordinate of the n-th point of the alternate terdragon curve; sequence A349197 gives X-coordinates.
0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, 1, 2, 2, 3, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, -1, -1, -2, -1, -2, -1, -2, -2, -3, -3, -2, -2, -3, -3, -4, -4, -3, -3, -2, -3, -2, -2, -1, -1, 0, -1, 0, 0, 1, 1, 0
Offset: 0
Keywords
Examples
The alternate terdragon curve starts as follows: 14 \ \ 2----3,12--10,13 \ / \ / \ \ / \ / \ 0----1,4--5,8,11--9 / \ / \ 6-----7 - so a(0) = a(1) = a(4) = a(5) = a(8) = a(9) = a(11) = 0, a(6) = a(7) = -1, a(2) = a(3) = a(10) = a(12) = a(13) = 1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
- Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, Selected Papers on Fun and Games, 2011, pages 571-614.
- Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. [Cached copy, with permission]
- Rémy Sigrist, Colored representation of the first 1 + 9^6 points of the alternate terdragon curve (where the hue is function of the number of steps from the origin)
- Rémy Sigrist, PARI program for A349198
- Index entries for sequences related to coordinates of 2D curves
Programs
-
PARI
See Links section.
Formula
a(9^k) = 0 for any k >= 0.
a(9*n) = 3*a(n).
Comments