cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349203 Triangle read by rows, T(n, k) = (lcm_{k=0..n} binomial(n, k)) / binomial(n, k).

This page as a plain text file.
%I A349203 #12 Jan 15 2025 06:49:09
%S A349203 1,1,1,2,1,2,3,1,1,3,12,3,2,3,12,10,2,1,1,2,10,60,10,4,3,4,10,60,105,
%T A349203 15,5,3,3,5,15,105,280,35,10,5,4,5,10,35,280,252,28,7,3,2,2,3,7,28,
%U A349203 252,2520,252,56,21,12,10,12,21,56,252,2520
%N A349203 Triangle read by rows, T(n, k) = (lcm_{k=0..n} binomial(n, k)) / binomial(n, k).
%e A349203 Triangle starts:
%e A349203 [0]   1;
%e A349203 [1]   1,  1;
%e A349203 [2]   2,  1,  2;
%e A349203 [3]   3,  1,  1, 3;
%e A349203 [4]  12,  3,  2, 3, 12;
%e A349203 [5]  10,  2,  1, 1,  2, 10;
%e A349203 [6]  60, 10,  4, 3,  4, 10, 60;
%e A349203 [7] 105, 15,  5, 3,  3,  5, 15, 105;
%e A349203 [8] 280, 35, 10, 5,  4,  5, 10,  35, 280;
%e A349203 [9] 252, 28,  7, 3,  2,  2,  3,   7,  28, 252;
%p A349203 b := n -> ilcm(seq(binomial(n, k), k=0..n)):
%p A349203 A349203 := (n, k) -> b(n)/binomial(n, k):
%p A349203 seq(seq(A349203(n, k), k = 0..n), n = 0..11);
%Y A349203 Cf. A007318, A347563, A025533 (row sums), A002944 (column 0 and main diagonal).
%K A349203 nonn,tabl
%O A349203 0,4
%A A349203 _Peter Luschny_, Nov 13 2021