This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349214 #19 Nov 24 2021 08:47:26 %S A349214 1,3,6,7,12,13,20,21,22,23,34,35,48,49,50,51,68,69,88,89,90,91,114, %T A349214 115,116,117,118,119,148,149,180,181,182,183,184,185,222,223,224,225, %U A349214 266,267,310,311,312,313,360,361,362,363,364,365,418,419,420,421,422,423,482,483,544 %N A349214 a(n) = Sum_{k=1..n} k^c(k), where c is the prime characteristic (A010051). %C A349214 For k in 1 <= k <= n, add k if k is prime, otherwise add 1. For example a(6) = 1 + 2 + 3 + 1 + 5 + 1 = 13. %H A349214 Antti Karttunen, <a href="/A349214/b349214.txt">Table of n, a(n) for n = 1..10000</a> %F A349214 a(n) = A034387(n) + A062298(n). - _Wesley Ivan Hurt_, Nov 23 2021 %t A349214 a[n_] := Sum[k^Boole[PrimeQ[k]], {k, 1, n}]; Array[a, 60] (* _Amiram Eldar_, Nov 11 2021 *) %o A349214 (PARI) a(n) = sum(k=1, n, if (isprime(k), k, 1)); \\ _Michel Marcus_, Nov 11 2021 %o A349214 (Python) %o A349214 from sympy import primerange %o A349214 def A349214(n): %o A349214 p = list(primerange(2,n+1)) %o A349214 return n-len(p)+sum(p) # _Chai Wah Wu_, Nov 11 2021 %Y A349214 Partial sums of A089026. %Y A349214 Cf. A010051, A034387, A062298. %K A349214 nonn %O A349214 1,2 %A A349214 _Wesley Ivan Hurt_, Nov 10 2021