This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349219 #11 Nov 14 2021 02:59:31 %S A349219 0,0,1,1,0,0,1,1,2,1,2,2,3,2,3,3,4,4,3,3,4,4,3,3,2,3,2,2,1,1,2,2,1,1, %T A349219 2,2,3,2,3,3,4,3,4,4,5,5,4,4,5,5,6,5,6,6,7,6,7,6,6,5,6,5,5,4,5,4,5,5, %U A349219 6,5,6,6,7,7,6,6,7,7,8,7,8,8,9,8,9,8,8 %N A349219 a(n) is the Y-coordinate of the n-th point of the 7-dragon curve; sequence A349218 gives X-coordinates. %C A349219 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity): %C A349219 Y %C A349219 / %C A349219 / %C A349219 0 ---- X %C A349219 The 7-dragon curve can be represented using an L-system. %H A349219 Rémy Sigrist, <a href="/A349219/b349219.txt">Table of n, a(n) for n = 0..16807</a> %H A349219 Rémy Sigrist, <a href="/A349218/a349218.png">Colored representation of the first 1 + 7^7 points of the 7-dragon curve</a> (where the hue is function of the number of steps from the origin) %H A349219 Rémy Sigrist, <a href="/A349219/a349219.gp.txt">PARI program for A349219</a> %H A349219 Jeffrey Ventrella, <a href="http://www.fractalcurves.com/Root7.html">Brainfilling Curves: The Root 7 Family</a> %H A349219 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %e A349219 The 7-dragon curve starts as follows: %e A349219 14 12 %e A349219 \ / \ %e A349219 \ / \ %e A349219 10,13--8,11 %e A349219 \ / \ %e A349219 \ / \ %e A349219 2---3,6,9---7 %e A349219 \ / \ %e A349219 \ / \ %e A349219 0----1,4----5 %e A349219 - so a(0) = a(1) = a(4) = a(5) = 0, %e A349219 a(2) = a(3) = a(6) = a(7) = a(9) = 1, %e A349219 a(8) = a(10) = a(11) = a(13) = 2, %e A349219 a(12) = a(14) = 3. %o A349219 (PARI) See Links section. %Y A349219 See A349041 and A349198 for similar sequences. %Y A349219 Cf. A349218. %K A349219 sign %O A349219 0,9 %A A349219 _Rémy Sigrist_, Nov 11 2021