A349225 Numbers k such that k | A002619(k).
1, 6, 8, 19, 28, 30, 80, 93, 119, 126, 136, 156, 186, 192, 205, 312, 351, 384, 448, 483, 567, 774, 820, 896, 945, 1081, 1100, 1187, 1240, 1375, 1464, 2268, 2628, 2720, 2898, 3197, 3744, 3840, 4544, 4992, 5079, 6200, 6567, 7296, 7832, 9184, 12288, 12636, 16578
Offset: 1
Keywords
Examples
6 is a term since A002619(6) = 24 is divisible by 6.
References
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 192.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..200
- Chong-Yun Chao, Generalizations of theorems of Wilson, Fermat and Euler, Journal of Number Theory, Vol. 15, No. 1 (1982), pp. 95-114.
Programs
-
Mathematica
f[n_] := DivisorSum[n, EulerPhi[#]^2 * #^(n/#) * (n/#)! &]/n^2; Select[Range[1000], Divisible[f[#], #] &]
-
Python
from itertools import count, islice from sympy import divisors, totient, factorial def A349225_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:not sum(totient(m:=n//d)**2*factorial(d)*m**d for d in divisors(n,generator=True)) % n**3, count(max(startvalue,1))) A349225_list = list(islice(A349225_gen(),10)) # Chai Wah Wu, Nov 07 2022
Comments